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Abstract. This paper deals with the algebraic principles of Precise Point Positioning with CDMA GNSS signals. It covers specifically 
the case of a network solution that is the determination of precise satellite corrections by joint processing of measurements 
generated by a network of ground stations. These satellite corrections are further delivered to user receivers via communication 
channels and are used to compute user coordinates with errors, usually not exceeding 1 cm. The determination of these corrections 
requires high precision and is carried out by processing phase measurements with resolved integer ambiguities. Resolution of 
phase ambiguities considerably improves the accuracy of estimated corrections and, at the same time, sharply reduces the time 
required to achieve centimeter-level positioning accuracy in the user solution. Algebraic principles of the user solution with 
integer ambiguity resolution of phase measurements with GNSS CDMA signals were studied in the previously published paper 
of the authors [1].
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Introduction

For the methodology and notation as well as key 
concepts and terminology used in this paper, the readers 
are referred to the previous publication of the authors [1]. 
In fact, in both cases of user and network solutions, the 
main challenge of measurement processing is in dealing 
with the rank deficiency of linear systems obtained by 
linearizing nonlinear mathematical models of code and 
phase measurements preserving integer nature of phase 
ambiguities.

The integer nature of phase ambiguities allows one 
to apply ambiguity resolution. This entails considerable 
increase in the accuracy of estimated corrections and, 
therefore, dramatic reduction in time required to achieve 
centimeter-level accuracy of user’s positional solution.

Mathematical models of code and phase 
measurements in Integer Precise Point 
Positioning (PPP) at ionosphere-free GNSS 
frequencies with CDMA

Mathematical models of the code j
iifr .ρ  and the 

phase j
iifrL .  measurements and of the Melbourne–

Wübbena combination  in Integer PPP algorithms 
at ionosphere-free GNSS frequencies result in a similar 
efficiency of ambiguity resolution as with the models 
based on initial frequencies. Such models were already 
introduced in the previous paper of the authors [1] and 
read as follows:

(1)

The notations are identical to [1].

The network solution

In the description of a network solution the following 
notations are used: Ji is the number of space vehicles (SV) 
in CDMA GNSS which are simultaneously visible by 
the entire network of ground stations at the i-th epoch; 

M is the number of ground network stations; imJ .  is 
the number of SVs visible by the m-th ground station 

Mm ,1=  at the i-th epoch. Table 1 is taken from [2] 
and is somewhat reduced for brevity. This table gives an 
example of satellite visibility by a network of GPS ground 
stations; further, it is referred to as a ‘scenario matrix’.

In Table 1 “1” corresponds to visible SVs, while “0” – 
to invisible SVs. The meaning of indices beside the units 
and shadowing of several units will become clear further. 
For the scenario given in Table 1, at the i-th epoch M=7, 
Ji=12, Jm.i equals the number of units in the scenario 
matrix lines, i.e., to the number of SVs visible by each 

m-th ground station at the i-th epoch. ∑
=

Σ =
M

m
kmk JJ

1
..  

(note that for the scenario of Table 1, JΣ.i = 32).
The purpose of a network solution is to estimate the 

ionosphere-free code clock offsets , phase clock 
offsets  and hardware biases  of the Melbourne–

Wübbena combination ( imJj .,1= ) for the whole set Ji of 
SVs visible by all ground stations in the network using the 
measurements of all the M ground stations comprising 
the network. In this case, the coordinates of stations 
and Ji observed satellites are assumed to be known with 
high accuracy. Subject to this, the system of nonlinear 
equations (1) of ionosphere-free measurements of 
the m-th station of the network ( Mm ,1= ) can be 
represented in the network solution in the following 
linearized form (instead of the lower ifr index, the index 
m indicating the station number is applied):

Mm ,1= , imJj .,1=  (2)

where j
im

j
im

j
im R ... −ρ=ρ∆ , j

im
j

im
j

im RLL ... −=∆ , 
 are the residuals of ionosphere-free 

combinations of the code j
im.ρ and the phase j

imL .  as 
well as the Melbourne-Wübbena combinations  for 
measurements of the m-th station; j

imR .  is the geometric 

distance between the m-th station Mm ,1=  and j-th SV 
imJj .,1= .
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The system of linearized equations (2) for the 
network solution can be rewritten with the use of the 
matrix notations:

 (3)

where  is the vector 

of observations, in which  

is the vector of ionosphere-free code residuals arranged in 
the order of stations and in order of SVs for each station;

, Mm ,1=  

is the vector of ionosphere-free code residuals for 
the m-th station ordered by SVs; , Mm ,1= ,

imJj .,1=  is the residual of ionosphere-free code 
measurement of the j-th SV at the m-th station; 

 is the vector of 

ionosphere-free carrier phase residuals arranged in the 
order of stations and in the order of SVs for each station; 

, Mm ,1=  is 

the vector of ionosphere-free carrier phase residuals of 
the m-th station arranged in the order of SVs; ,

Mm ,1= , imJj .,1=  is the residual of ionosphere-free 
carrier phase measurement of the j-th SV at the m-th station; 

 is the vector of 

residuals of Melbourne-Wübbena combinations arranged 
in the order of the stations and in the order of SVs for each 
station. ,

Mm ,1=  is the vector of residuals of Melbourne-
Wübbena combinations at the m-th station arranged in 
the order of SVs; , Mm ,1= , imJj .,1=  is the 
residual of the Melbourne-Wübbena combination of the 
j-th SV at the m-th station.

 

(4)

is the vector of the estimated variables in the network 
solution with the dimension nxi=4M+3Ji+2JΣ.i, where 

 is the M-vector of the 

uncompensated wet component of zenith tropospheric 
delays (m) at the locations of ground stations;  is 

the M-vector of receiver ionosphere-free code clock 
offsets for all the M stations;  is the M-vector of 

receiver ionosphere-free phase clock offsets for all the 
M stations of the ground network;  is the M-vector 

of receiver hardware biases of the Melbourne–Wübbena 
combinations for the M stations of the ground network; 

 is the Ji-vector of ionosphere-free code clock offsets 

Table 1. SV visibility by seven network stations: 1 – SV is visible, 0 – SV is invisible

m

PRN numbers of GPS SVs visible by the entire network of ground stations

Jm.i

1 2 3 10 16 17 21 22 23 26 27 31

Numbers of SVs in their positions in the united array

1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d 

ne
tw

or
k 

st
at

io
ns

 1 0 0 11,1 0 0 12 13 0 14 15,2 0 0 5

2 16,3 0 17 0 0 18,4 19,5 0 110 0 0 0 5

3 111 0 112 0 0 113 114,6 0 115,7 0 0 0 5

4 0 0 0 0 116,8 0 0 117,9 0 0 0 118,10 3

5 0 119,11 0 120,12 0 0 0 0 0 121,13 122 0 4

6 0 0 123 0 0 124 125,14 0 126 127,15 128,16 129,17 7

7 0 130 0 131 132,18 0 0 0 0 0 0 0 3
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for Ji SVs visible by the entire network of ground stations 

at the i-th epoch;  is the Ji-vector of ionosphere-free 

code clock offsets for Ji SVs visible by the entire network 
of ground stations at the i-th epoch;  is the Ji-vector 

of satellite hardware biases of Melbourne-Wübbena 
combinations for Ji SVs visible by the entire network of 

ground stations at the i-th epoch; 
iJ

T
i
.1

1
∑×

N  is the JΣ.i-vector of 

integer ambiguities N1 included in the system (2) arranged 
in the order of stations and in the order of SVs for each 
station at the i-th epoch; is the JΣ.i-vector of integer 

ambiguities Nmw included in the system (2) arranged in the 
order of stations and in the order of SVs for each station at 

the i-th epoch;  is the vector 

of measurement errors of the ionosphere-free code , 

ionosphere-free phase  and of Melbourne-Wübbena 

combination, which are formed according to the 

same principle as the vector 
13

.
. ×∑ iJ

inetY .
 

(5)

is the design matrix for the observation vector 
13

.
. ×∑ iJ

inetY  

and the vector of the estimated variables  (4), where 

 is the (3JΣ.i×M)-matrix 

of mapping functions j
imw .  ( Mm ,1= , imJj .,1= ),

which are used to convert zenith tropospheric delays 
(m) into slant delays for actual elevation angles of 
satellites visible at the m-th station at the i-th epoch;

;

( )

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1
1
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
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××××∑ ..2.1.

..2.1 UUUU   is the matrix 

consisting of the M submatrices 
iim JJ

im
×.

.U , Mm ,1=  situated 

one under another. Each submatrix 
iim JJ

im
×.

.U  is formed from 

the m-th ( Mm ,1= ) row of the scenario matrix given 
in Table 1 by splitting it into the Jm.i rows, which are all 
filled with 0 except just one element which is equal to one. 
Those unit-elements are situated in successive split rows 
of the submatrices 

iim JJ
im

×.

.U  at the same places as in the m-th 

row of the scenario matrix. Figure 1 shows the example 
of how the submatrix 

ii JJ
i

×.1

.1U is constructed by splitting the 

1-st row of the scenario matrix into the J1.i=5 rows.

The 1st row of 
scenario matrix 0

0 00 001000000

1 00 000000000
0 00 000001000
0 00 000010000
0 10 000000000

1 1 001011000

ii JJ
i

×.1

.1UMatrix             , obtained by 
splitting of the 1st row from 

the scenario matrix

Fig. 1. Splitting the 1-st row of the scenario matrix into  
J1.i=5 rows.

The remaining rows of the scenario matrix are split in 

the same way; ;

ii JJ
i

.. ∑∑ ×
E  is the identity matrix of dimension (JΣ.i× JΣ.i).

The matrix inet.V  whose columns are the basis 
vectors of the null space of the design matrix (5) 
was obtained:
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 (6)

where

, ,

,

are the matrices, where 
1×M

m1  is the column vector made 

of M nulls excluding the unit in the m -th, Mm ,1=  

position; 
1. ×Σ iJ

m1 is the JΣ.i-vector formed from the M 

subvectors
1. ×imJ

m1 , Mm ,1= . All the Jm.i-subvectors 
1. ×imJ

m1  

are zeroes, except for the m-th consisting of ones.

are the matrices, in which 
1
.

. ×imJ

j
ims1  1,1 −= iJj , Mm ,1=  

are the column vectors of the submatrices 
iim JJ

im
×.

.U  

(excluding the last column vector) of the matrix
ii JJ

i
×∑ .

U , the 

construction of which was described earlier. For example, 

the J1,i-1 column vectors  form 

the matrix 
ii JJ

i
×.1

.1U  without the last column. This matrix is 

shown in Fig. 1, where 5.1 =iJ  and .

The number of columns in the matrix  

(6) is 2M+2Ji+1 and, therefore, the rank deficiency of the 
design matrix  (5) is dfhi=2M+2Ji+1, and its rank 

is rnkhi=nxi-dfhk=2M+Ji +2JΣ.i-1. It can be seen that in 
the network solution, by contrast to the user solution, the 
rank deficiency dfhi of the matrix  (5) depends on 

the number Ji of observed satellites and the number of the 
stations M.

As in the user solution, the linear system (3) is 
singular, i.e., it has an infinite set of solutions lying in 
the dfhi-dimensional solution space parallel-shifted with 
respect to the null-space  (6). However, as can 

be seen from (6), the first M elements of the null-space 
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basis vectors  (6) are zeroes. This means that 

the set of solutions of the system (3) is orthogonal to 
those axes of the space variables, which correspond to the 
first M elements of the vector  (4). As it can be seen 

from (4), these elements compose the vector . Thus, 

the first M coordinates of the points lying in the dfhi-
dimensional solution space are the same for all points 
of this space and, hence, all M elements of the vector 

 can be estimated unambiguously. The remaining 

elements of the state vector  (4) are co-variables, i.e., 

they cannot be estimated per se, but only some linear 
combinations thereof are estimable. The co-variables 
include the elements of the integer vectors , , as 

well as the vectors , , , estimation of which is 

the purpose of the network solution. Now we are going 
to derive the expressions for linear combinations, which 
include these vectors.

As in the case of a user solution, the determination of 
linear combinations formed by co-variables is performed 
with the help of the S-transformation theory [2–5], i.e., 
by projecting all the points of the space of the variables 
onto the S-subspace along the null-space  (6). 

The dimension of the S-subspace equals the rank of the 
matrix  (5) of the linear system (3). Similar to a 

user solution, the S-subspace of the network solution can 
be obtained from the system of normal equations [2, 3]

 
(7)

where  is the matrix of the rank dfhi, and all the 

dfhi column vectors are orthogonal to the S-subspace. 
By projecting point coordinates, we get a new vector of 
estimated variables  of the same dimension as the 

original vector  (4). The relation of vectors ,  

is defined by the expression

 
(8)

where 
.

To preserve the integer nature of linear combinations of 
integer co-variables, which are the components of the 

integer vectors 
1.

1
×∑ iJ

N  and  included in the initial state 

vector  (4), the columns of the matrix  should be 

set in the same way as in the user solution [1]. Namely, all 
the elements in the columns of the matrix  should be 

set to zero, excluding the only element equal to 1.
The estimate  of a new state vector  in 

the network solution can be found from the solution 
of the extended system of linear equations obtained by 
combining the linear systems (3) and (7)

. (9)

From the equation  (7), taking 

into account the specific type of the columns of the matrix 
, it follows that the elements of the solution vector 

 of the system (9) standing on the places defined 

by the position of the units in the dfhi columns of the 
matrix  equal zero. But if it is known in advance that 

dfhi of the elements of the solution vector  of the 

system (9) are zero, hence, the estimates of the remaining 
rnkhi elements of the solution vector of the system (3) 
can be obtained by solving a simpler system of the linear 
equations

 (10)

where  is the compressed form of the 

initial matrix  (5), where the dfhi columns are 

cut from the positions in which the units are located 

in the dfhi columns of the matrix ;  is the 
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compressed state vector obtained from the initial state 
vector , where all the zeroes are excluded. Hence, we 

see that positions of ones in dfhi columns of the matrix 
 determine the positions of excluded columns 

dfhi of the initial matrix  (5). Nevertheless, this 

manipulation of dropping the columns makes the rank 
of the compressed matrix  match the rank 

rnkhi of the initial matrix  (5). This requirement is 

satisfied if one of the M ground stations with the number 
r (reference) 1≤ r ≤M is defined as reference and if the 
matrix  is constructed by merging three submatrices 

. The units in 

three columns of the first submatrix  are located 

on the positions M+r, 2M+r, 3M+r, respectively. Placing 
the units in the columns of the submatrix  this way, 

we posit them in the same positions as the ionosphere-
free code  and phase  clock offsets and the 
biases of the Melbourne-Wübbena combination  
for the r-th ground station in the initial state vector .

The location of units in (dfhi–3)/2=M+Ji–1 columns of 

the submatrices ,  is determined by 

position of units in the spanning tree matrix 
iJM×

STM

elements of which are either zero or one. The matrix 

iJM×
STM has the same dimension M× Ji as the scenario 

matrix, while the number of units in 
iJM×

STM  equals M+ 

Ji –1, and all these units constitute the unit-subspace of 
the scenario matrix. Hence, 

iJM×
STM  can be shown by 

highlighting in grey some units in the scenario matrix. 
An example of such highlighting is shown in Table 1.

iJM×
STM  is obtained from the scenario matrix through 

a special algorithm, which can be found in [2, 6–9]. In 
particular, Prim’s algorithm applicable to weighted non-
directed graphs is briefly described as follows [2]:

1. Take the edge with the highest weight and place 
two thereby connected nodes in the set V1;

2. Take the set of edges that connect nodes from V−
V1 to nodes from V1, and select the edge with the highest 
weight;

3. Add the node belonging to V−V1 of the edges 
selected in step 2 to V1;

4. While V−V1≠0, go to step 2.
The number of units in 

iJM×
STM , i.e., M+Ji–1, 

equals the number of columns of submatrices 
, , i.e., each unit of 

iJM×
STM  is 

placed in a certain way within the rows numbered 

iii JJMJMl .34,134 Σ++++=  of one of the 

columns of the submatrix  and in the rows with the 

numbers iiii JJMJJMl .. 234,134 ΣΣ +++++=  of 

one of the columns of the submatrix  according 

to the following algorithm. All the units comprising the 
scenario matrix are indexed by the first lower index in 
the order of their location from the left to the right and 
for rows from up to down in the range from 1 to JΣ.i. 
Then, the units of the scenario matrix, which comprise 
the matrix 

iJM×
STM , are indexed by the second lower index 

in the same order in the range from 1 to M+ Ji –1. As 
a result, units comprising the matrix 

iJM×
STM , will have 

two indices, and the remaining units will have only one. 
An example of such indexation is shown in Table  1. 

Dual-indexed units comprising the matrix 
iJM×

STM are 

highlighted in grey. Let us denote the first index of dual-

indexed units as μ , while the second index is ν 

. Each dual-indexed unit corresponds 

to the column ν of the matrices 
 
and .

The element 4M+3Ji+μ of ν-th column of the matrix 
 is replaced by one, and the remaining 

elements of this column are zero. Similarly, the element  
4M+3Ji+JΣ.i+μ of ν-th column of the matrix  is 

replaced by one, while the remaining elements of this 
column are zeroes.

A unique solution of the system (10) can be obtained if 
the number of rows of the compressed matrix  
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is greater or equal to the dimension of the compressed 
state vector , i.e., the condition 3JΣ.i  ≥  (nxi-

dfhi) = 2M+Ji+2JΣ.i–1 should be fulfilled. Hence, we obtain 
the following constraint JΣ.i ≥ 2M+Ji–1, which should be 
met to get a unique network solution.

In general, the analytical calculation of the vector 
 by the formula (8), which will include linear 

combinations of elements of the vectors , , as 

well as the vectors ,  and , is cumbersome. To 

reduce the complexity, let us consider the computation 
of the vector  for an extremely simplified case when 

M=3, Ji=4, for which the scenario matrix and 
iJM×

STM  are 
given in Table 2.

Table 2. SV visibility by the ground stations for the simplified 
case with M=3, Ji =4, JΣ.i=9

m

Numbers of SVs visible by 
ground stations

Jm1 2 3 4

Ground 
network 
stations

1 111 122 133 0 3

2 144 0 15 165 3

3 0 17 18 196 3

For the case M=3, Ji =4, JΣ.i=9, the vector of the 
variables  (8) and the corresponding projection 

matrix  will be quite bulky even in the simplified 

case. Hence, the expressions below are presented only 
for the subvectors of interest , , , ,

19
.

×
is1N ,  of the vector  (8) obtained by 

symbolic computations in MATLAB for r=1. 

,

,

,

,

,

. (11)

As can be seen from the expressions (11), the 
elements of the vector  of 

uncompensated wet component of the zenith tropospheric 
delays (m) at the locations of three ground stations, as 
expected, are unbiased. The initial integer ambiguities 

19×
i1N

 
and  are estimated with biases, i.e., as a part 

of the linear combinations 
19

.
×

is1N
 
and 

19
.

×
imw.sN , which 

are also integer. We are interested in the vectors ,

, and  which are also estimated with biases, i.e., 

are composed of the linear combinations , ,

and . However, as it is shown in (11), for all Ji SVs, 

the estimation biases of the variables included in the 
vector  are the same and equal to ionosphere-free 

code clock offsets dTp.r.i of the reference station; the 
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estimation biases of the variables included in the vector 
 are accurate within an integer combination of the 

wavelengths , , and the estimation biases of 

the variables included in the vector  are accurate 

within an integer number of the wavelengths λmw. It leads 
to respective biases in the residuals of the ionosphere-

free code , carrier phase 

 and Melbourne-Wübbena 

combinations  measurements 
included in the left part of the system of equations in the 
user solution. However, the properties of this system are 
such that these biases in the left part do not change the 
estimates of the unambiguously estimated variables x∆ , 

y∆ , z∆ , iD∆ . Thus, to obtain estimates of the variables 

x∆ , y∆ , z∆ , iD∆  in the user solution instead of estimates 
of variables which are components of the vectors , 

, , one can use their biased equivalents, which 

are components of the vectors , , 
1

.
×iJ

imw.sb  (11).

The algorithms of solving the linear equation system 
(10) taking into account the integer nature of the part of 
its variables, are the basis of the algorithms of estimating 

the variables which are the part of the vectors ,

, and 
1

.
×iJ

imw.sb , which are the aim of solving the 

network solution of the Integer PPP. Unfortunately, 
the restrictions for the article’s volume do not allow us 
to explore these algorithms in this paper. We can only 
refer a reader to existing literature on the methods of 
linear recurrent estimating [10, 11] and on phase integer 
ambiguity resolution [12–15].

Examples of determination of precise 
corrections and their features

Two versions of the network solution were 
implemented. The first solution was obtained with using 
5 European stations assuming the permanence of the SV 
constellation (all stations of the ground network receive 
measurements from the same set of 6 SVs). Figure 2 shows 
decoupled code and carrier phase satellite corrections 
calculated for one of the 6 satellites in the first version of 
the network solution.

According to (11), the bias between code and phase 
corrections shown in Fig. 2 may differ from the true one 
by an integer number of the wavelengths nifr∆λ , ifrn2

λ . It 

can be seen that this bias is constant during the permanent 
observation scenario.

Fig. 2. Decoupled satellite corrections (code and phase) for one of 6 SVs calculated for the first version of the network solution.
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Within the second version of a network solution, 
measurements from 10 stations of Russian SBAS (SDCM) 
network were used (highlighted in Fig. 3 by green circles), 
taking into account changing satellite constellation. The 
receivers installed at different stations of the network 
had dissimilar characteristics; hence, the accuracy of 
the estimation of decoupled satellite corrections was 
somewhat degraded which caused overall reduction of 
the accuracy of the user solution.

Figure 4 [16] shows the decoupled code and carrier 
phase satellite corrections calculated for one of the 

satellites in the second version of the network solution. 
The graph shows jumps in phase corrections  at the 
moments of change in the observation scenario and/or 
change of the matrix 

iJM×
STM  associated with changes in 

the estimated linear combinations in the components of 
the vector .

The results of the user solution applying the evaluated 
corrections shown in Figs. 2 and 4 were already presented 
and discussed in [1].

Fig. 3. SDCM network stations used in the second version of a network solution.

Fig. 4. Decoupled satellite corrections (code and phase) for one of the SVs calculated in the second version of a network 
solution.
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Conclusion

Algebraic principles of network solutions for 
PPP including ambiguity resolution of carrier phase 
measurements in GNSS with CDMA are considered.

Examples of determination of precise satellite 
corrections for the GPS Integer PPP are presented. 
Significant reduction in convergence time required to 
achieve high-precision positioning when using precise 
satellite corrections in comparison with the Float PPP is 
demonstrated.

As it follows from the expression for the vector 
 that is included into (11), in the case of a timely 

determination of the ionosphere-free code clock offset 
 of a reference ground station relative to the GNSS 

time scale, there appears a possibility of rapid evaluation 
of the ionosphere-free code clocks offsets  iJj ,1=  
of all the Ji SVs which are visible by ground stations at the 
i-th epoch. This data can be used to increase the accuracy 
of broadcast clock corrections transmitted in the SV 
navigation messages.

The experience gained so far shows the urgent need 
for the methods of receiver calibration to deal with the 
algorithms of determination of precise decoupled satellite 
corrections.
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