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Abstract. This paper deals with the algebraic principles of Precise Point Positioning with CDMA GNSS signals. It covers specifically
the case of a network solution that is the determination of precise satellite corrections by joint processing of measurements
generated by a network of ground stations. These satellite corrections are further delivered to user receivers via communication
channels and are used to compute user coordinates with errors, usually not exceeding 1 cm. The determination of these corrections
requires high precision and is carried out by processing phase measurements with resolved integer ambiguities. Resolution of
phase ambiguities considerably improves the accuracy of estimated corrections and, at the same time, sharply reduces the time
required to achieve centimeter-level positioning accuracy in the user solution. Algebraic principles of the user solution with
integer ambiguity resolution of phase measurements with GNSS CDMA signals were studied in the previously published paper
of the authors [1].
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Introduction

For the methodology and notation as well as key
concepts and terminology used in this paper, the readers
are referred to the previous publication of the authors [1].
In fact, in both cases of user and network solutions, the
main challenge of measurement processing is in dealing
with the rank deficiency of linear systems obtained by
linearizing nonlinear mathematical models of code and
phase measurements preserving integer nature of phase
ambiguities.

The integer nature of phase ambiguities allows one
to apply ambiguity resolution. This entails considerable
increase in the accuracy of estimated corrections and,
therefore, dramatic reduction in time required to achieve
centimeter-level accuracy of user’s positional solution.

Mathematical models of code and phase
measurements in Integer Precise Point
Positioning (PPP) at ionosphere-free GNSS
frequencies with CDMA

Mathematical models of the code p!.jf,'l. and the
phase [j,, measurements and of the Melbourne-
Wiibbena combination 7w/ in Integer PPP algorithms
at ionosphere-free GNSS frequencies result in a similar
efficiency of ambiguity resolution as with the models
based on initial frequencies. Such models were already
introduced in the previous paper of the authors [1] and
read as follows:

i pi J J J
Py =R +wW/AD, +dT, . —dt] . +& ..
oo pJ J
Liﬁ_l_ =R’ +w/AD, + dTL_ifr_i
J J J
- 7\'Aniff‘j\/vl - }\‘nziﬁﬂwa + éL.ifr.i

B dtézfrl -

j_ J J J
mwi - bmw - bmw - }\‘mwwa +§

mw.1

Jj=1LJ, (1)

1

The notations are identical to [1].
The network solution

In the description of a network solution the following
notations are used: /. is the number of space vehicles (SV)
in CDMA GNSS which are simultaneously visible by
the entire network of ground stations at the i-th epoch;

M is the number of ground network stations; J, . is
the number of SVs visible by the m-th ground station
m =1, M at the i-th epoch. Table 1 is taken from [2]
and is somewhat reduced for brevity. This table gives an
example of satellite visibility by a network of GPS ground
stations; further, it is referred to as a ‘scenario matrix.

In Table 1 “1” corresponds to visible SV's, while “0” -
to invisible SVs. The meaning of indices beside the units
and shadowing of several units will become clear further.
For the scenario given in Table 1, at the i-th epoch M=7,
J=12, ] . equals the number of units in the scenario
matrix lines, i.e., to the number of SVs visible by each

M
m-th ground station at the i-th epoch. Jy, = sz.k
m=1

(note that for the scenario of Table 1, J .= 32).
The purpose of a network solution is to estimate the

ionosphere-free code clock offsets dtg_l-ﬁ.j, phase clock

offsets dt zlf” and hardware biases b’ of the Melbourne-

Wiibbena combination ( j =1, J,, ;) for the whole set ], of
SVsvisible by all ground stations in the network using the
measurements of all the M ground stations comprising
the network. In this case, the coordinates of stations
and ], observed satellites are assumed to be known with
high accuracy. Subject to this, the system of nonlinear
equations (1) of ionosphere-free measurements of
the m-th station of the network (m =1, M ) can be
represented in the network solution in the following
linearized form (instead of the lower ifr index, the index
m indicating the station number is applied):

Ap! =w! AD +dI  — dtg_i +E&/

p.m.i p.m.i

AL{m = W:;.iADm.i + d]},.m.i - dti_i -

- Q\*AmﬂNliz - }\"nzzﬁN;;w.m +& .

Amw;{q_i = bmw.m - b;{zw - lmriiw_m + E.;iaw_m_i
m=LM, j=1J,, (2)
where  Ap;,=p, —R,., AL, =L, R,

Amw? =mw/ = are the residuals of ionosphere-free
. . J J
combinations of the code p;  and the phase L . as

well as the Melbourne-Wiibbena combinations mw? . for
J
m.i

measurements of the m-th station; R’ . is the geometric

distance between the m-th station m =1, M and j-th SV
j=LJ

m.i *
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Table 1. SV visibility by seven network stations: 1 — SV is visible, 0 — SV is invisible

PRN numbers of GPS SVs visible by the entire network of ground stations
1 2 3 10 16 17 21 22 23 26 27 31
" Numbers of SVs in their positions in the united array I
1 2 3 4 5 7 8 9 10 11 12
0 | 1 o | 0o [1,] 0 |0 1, | o |1, [1,]| 0 |0 |5
=}
S 12 [ 1g |0 |1 |o 0 |1, [ L, | 0o |1, |0 0 0 5
% 301, o |1, 0o o |1, |1, 0 |1, 0] 0|05
E 4 oo o |0 |1, 0 |1, 0 | 0o | 0 [1,. ] 3
~§ 5 1 0 |1y,] 0 [1,,] 0 0 [ 0 | 0 [L,,[ 1, | 0o | 4
g 6 [ o [ o [, o [ o |1, [l 0 | L byl Ly | 7
7 0 | 1, | 0 | 1, |1, 0 0 0 0 0 0 3

The system of linearized equations (2) for the
network solution can be rewritten with the use of the
matrix notations:

Y. =H,_ . x_ +&

net.i net.i net.i
3Jy %l 3Jz xnx a1

(3)

ner.i
3J5 %1

T
where ¥ _ . = {(Api)T (AL (Amwi)T} is the vector

3Jy ;x1 IxJys; IxJy ; IxJy

T
APL.;}

Ty

of observations, in which Ap, = {Apf . Apl,

Js Xl IxJ,, IxJ,,
is the vector of ionosphere-free code residuals arranged in
the order of stations and in order of SV for each station;
Ap,, = [Aplm.i Apfn.i Ap;:’f’l:’ ]T’ m=1,M

Ty X1
is the vector of ionosphere-free code residuals for
the m-th station ordered by SVs; Ap;_i, m=1,M,
j=LJ,, is the residual of ionosphere-free code
measurement of the j-th SV at the m-th station;
T T
iﬁa {%;i ﬁzf
ionosphere-free carrier phase residuals arranged in the
order of stations and in the order of SV for each station;
AL, =[AL, A, o AL], m=LM s

Jxl

the vector of ionosphere-free carrier phase residuals of
the m-th station arranged in the order of SVs; A/
m=1,M, j=1,J,, isthe residual of ionosphere-free
carrierphasemeasurementofthej-thSVatthem-thstation;

T
ALLI} is the wvector of

Jar s

Amw, = {Amw{i Amw!

Jyx1 IxJ; ; 2xJ) ;

T
AmwAT“} is the vector of

IxJy

residuals of Melbourne-Wiibbena combinations arranged
in the order of the stations and in the order of SV's for each

. . 1 2 T
station. Amw, = [A mw, . Amw, . Amw, |,

¥l
m=1, M is the vector of residuals of Melbourne-
Wiibbena combinations at the m-th station arranged in

the order of SVs; Amw,i_i, m=1LM, j=1,J . isthe
residual of the Melbourne-Wiibbena combination of the
j-th SV at the m-th station.

_ T T T T
xnet.i - ADi d];z dIYLZ Bmw.i
mx;x1 1M IxM IxM IxM
a
A 7 T T T
dtp.z' dtL.i bmw.z' Nlt wa.i
1xJ; 1xJ; 1xJ, IxJ5 ; IxJy ; (4)

is the vector of the estimated variables in the network
solution with the dimension nx=4M+3]+2] , where
7
AD! =|AD], AD], ADAT“] is the M-vector of the
IxM
uncompensated wet component of zenith tropospheric

delays (m) at the locations of ground stations; dTPZ is
M
the M-vector of receiver ionosphere-free code clock
offsets for all the M stations; d7, LT_i is the M-vector of
IxM
receiver ionosphere-free phase clock offsets for all the

M stations of the ground network; B~ is the M-vector
IxM

of receiver hardware biases of the Melbourne-Wiibbena
combinations for the M stations of the ground network;

dt_, is the J-vector of ionosphere-free code clock offsets
IxJ;

i
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for J. SVs visible by the entire network of ground stations

at the i-th epoch; dt! , is the J.-vector of ionosphere-free
IxJ;

code clock offsets for J. SVs visible by the entire network

of ground stations at the i-th epoch; b . is the J.-vector

mw.1

Ix¢J;
of satellite hardware biases of Melbourne-Wibbena
combinations for J, SVs visible by the entire network of

ground stations at the i-th epoch; ¥ ll.T is the ], -vector of
IxJy ;

integer ambiguities N1included in the system (2) arranged

in the order of stations and in the order of SVs for each

station at the i-th epoch; NV T is the J, -vector of integer

mw.i
IxJy

ambiguities N included in the system (2) arranged in the
order of stations and in the order of SV for each station at

T

. — [P [0 28 p— T .

the i-th epoch; E,,,, =|Ep, EL, Emw, | is the vector
3Jy X1 IxJy ; IxJs ; IxJy ;

. =T
of measurement errors of the ionosphere-free code Ep;,
by

ionosphere-free phase ZL, and of Melbourne-Wiibbena
IxJs ;

— T . . . .
Emw; combination, which are formed according to the
IxJy ;

same principle as the vector ¥

net.i *

3Jy ;1
H . =| HW, d, A,
3Jg X 3Jy xM 305 x3(M+J;)  3Js ;x2J5 (5)
is the design matrix for the observation vector ¥ .
3Jy %1
and the vector of the estimated variables x,, ; (4), where

Hw, :{wa Hw! 0

3Jy ;xM MxJs ; MxJs ; MxJy ;

T e x1
} is the (3], xM)-matrix

of mapping functions w/. (m=LM, j=1,J,,),
which are used to convert zenith tropospheric delays
(m) into slant delays for actual elevation angles of
satellites visible at the m-th station at the i-th epoch;

T
1 ‘]].1
W].i W].i 0 O
Hwi == >
Js i xM
Zi 1 s

1 0 0 -U 0 0

Jy i xM  Jy ;xM Jy i xM Jy i %J, Jy i xJ; Jy ixJ;
d. =0 1 0 0 -U 0 |;

35 }3(M+J;) Jy Mo Ty Mo Ty M Ty )y Jy o Ty g
0 0 0 -U
Jy i xM Ty xM o Jy xM o Ty xd; o Iy o xJp Ty xd;

1 0 - 0
Jyix1 Jyx1 Jyix1
0 1 - 0
1 — Jyix1 Jyix1 Jyix1
Jy.ixM : : :
0 1
Jy XL x|
b
1
1 =|. |m=1,M;
Jm.[X1
1
T
T T T . .
Uu =\U,, U, U, is the matrix
s ixJ; JixJy JixJy, JixJyp

consisting of the M submatrices U
J

i » m=1,M situated
xJ;

m.i i

one under another. Each submatrix U, ; is formed from
Jm.ix‘/f

the m-th (m =1, M ) row of the scenario matrix given
in Table 1 by splitting it into the J . rows, which are all
filled with 0 except just one element which is equal to one.
Those unit-elements are situated in successive split rows

of the submatrices U, , atthe same places as in the m-th
S ixJ;

row of the scenario matrix. Figure 1 shows the example

of how the submatrix U, is constructed by splitting the
JiixJ;

1-st row of the scenario matrix into the J, =5 rows.

The 1* row of

scenario matrix —[0]o[1]0[0[1[1[0[1]1[0]0]

Matrix 14 obtained by
splitting of the 1* row from

the scenario matrix

—

SEEEE
SEEEE
o|o|c|lol—
SEEEE
SEEEE

o |ojo|o|—|c|«
olo|o|lolo
S EEE
S EEE
SEEEE
SEEEE

== ==

Fig. 1. Splitting the 1-st row of the scenario matrix into

J, =5 rows.

The remaining rows of the scenario matrix are split in

0 0
Iz iz Iz x5
the same way; A, = —kmﬁ E, —knziﬂ E |
3J5x2J05; JrixJz JrixJz
J 91 _}\'mw Ei
zitYzi JZJXJZJ ]

E, is the identity matrix of dimension (J x J, ).
Iy ixJy

The matrix V

net.i
vectors of the null space of the design matrix 351 net.i (5)

XN
was obtained: =

whose columns are the basis
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vV =

net.i
ni,<(2M+27,+1)

- Vlnet.i Vznet.i V3net.i V4net.z’ Vsner.f
nx;x3 nx <M nx <M (T 1) (1) (6)
where
) i 0 0 0
0 0 Mx1 Mx1 Mx1
Ma M M1 0 0 e 0
1 M1 M1 Mx1
1 2 M
M M Md ) ) .
6 1X 6 }LA"’/’ Mx1 }LA’"f" Jlfxl kAmf’ }m
Mx1 Mx1 Mxl 0 0 cee 0
1 Mx1 Mx1 Mx1
Md M AT
Vlnzr.: = 1 0 0 P Vznet.i = Jixl Jixl Il >
g3 Jixd I Jix e xM e
0 1 Jix1 Jix1 Jxl
Jx Jix Jix .
0 0 1 Jix1 Jixl Jxd
Jax g Jix 1 2 . M
0 Js ¥l Jsixl Js ¥l
2050 20540 2754 | 0 *
AT A U
0 0
Mx1 Mx Mx
0 0 0
Mx1 Mx1 Mx1
1 2 v
naifr i naif
Mxi Mx A
1 2 M
A, 1 A, 17 e A1
™ M1 " M1 " M
— 0 0 0
V3net.i - Jix1 Jix1 Jix1 >
e xM 0 0 0
Jxl Jx1 Jx1
0 0 0
Jxl Jpx1 Jx1
Jg %1 Jg 1 AN
1 2 M
A Jy ¥ Jepd |

are the matrices, where 1” is the column vector made

Mx1

of M nulls excluding the unit in the m -th, m=1, M

position; 1"

Jyix1

is the J, -vector formed from the M

subvectors 1" , m=1, M . All the ] -subvectors 1"

m.[Xl m.in

are zeroes, except for the m-th consisting of ones.

0 0 - 0
M Mx1 M1
0 0 0
301 3M 3Mx1
0 0 - 0
Jx I Jixt
1 2 Ji-1
1 -k, 17 - —h 1"
anifr 5 Amifr 5 anifr 7
0 0 . 0
Jx I Tt
- 1 2 Ji-1
Vd i = 1s; 1s; 1s;’
o J3=1) gy J 1 Jysxl
1 2 J-1
1s, 1s; |
Ty Jy <1 Jy 1
1 2 J-1
1s,, 1s,, 1sy;
Tyl Tyl Jar %1
0 0 0
| Ty X1 FASEE

0 0 0
M1 M1 Mx1
0 0 0
3M =1 3M=1 3M=1
0 0 0
Jixl Jixl Jix1
0 0 0
Jex1 Jpxl Jpxl
2 J-1
Ay, 1 o 12 e 17
L L ™
A . Ao
naifr 1 miff 2 mifr Ji-1
S 1s, - o Is; --- - e 1s;
Anifr J171 Anifr D14 Anifr L1
A A Ao
miff 1 i 2 myifi Ji-1
Vs, = f%flsz 77‘f1s2 iy 2
n (1) Kmﬁ Jai7l ?‘Amfr Jaxl ;\'Amfr vl

.

A . Y
- 1s;, - i P - 157

] ?\' M ]

Anify Jar X1 Anify Jar 1 Anifr Tai*1

1 2 Ji-1
1s, 1s; 1s;"
JAl i Tyl

1 2 J-1
1s, 1s; 1s)’
Jy %l Jy %l Jy %l

1 2 J-1
]'S:if ]'SJ{ ]'s:if
Ty %1 Tar 1 Tag 71

j=LJ -1, m=1,M

are the matrices, in which 1s/ .
Jix1

m.i

are the column vectors of the submatrices U

m.i
JpixJ;

m.i

(excluding the last column vector) of the matrix U, ,the
Iy i xJ;

construction of which was described earlier. For example,

2
Is;

Jyoxl Jpxl

the J, -1 column vectors [ Is!
Jy =1

1s1J i IJ form

the matrix U,; without the last column. This matrix is

JrixJ;i
shown in Fig. 1, where J,; =5 and J, =12.

The number of columns in the matrix |

nxx(2M +2J,+1)
(6) is 2M+2] +1 and, therefore, the rank deficiency of the
design matrix H, , (5) is dfh=2M+2]+1, and its rank

3Ty
is rnkh=nx-dfhk=2M+], +2] -1. It can be seen that in
the network solution, by contrast to the user solution, the
rank deficiency dfh, of the matrix H,,,., (5) depends on

3Ty

the number ] of observed satellites and the number of the
stations M.

As in the user solution, the linear system (3) is
singular, i.e., it has an infinite set of solutions lying in
the dfh-dimensional solution space parallel-shifted with
respect to the null-space ¥V (6). However, as can

net.i
nx(2M +2J,+1)

be seen from (6), the first M elements of the null-space
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DETERMINATION OF CLOCK CORRECTIONS FOR PRECISE POINT POSITIONING 7
WITH GNSS CDMA SIGNALS

basis vectors V (6) are zeroes. This means that

net.i
nxx(2M +2J,+1)

the set of solutions of the system (3) is orthogonal to
those axes of the space variables, which correspond to the
first M elements of the vector x,,,

nx;x1
from (4), these elements compose the vector AD.. Thus,
Mx1

the first M coordinates of the points lying in the dfh -
dimensional solution space are the same for all points
of this space and, hence, all M elements of the vector
AD, can be estimated unambiguously. The remaining
Mx1

elements of the state vector x,,

nx;x1

(4). As it can be seen

(4) are co-variables, i.e.,

they cannot be estimated per se, but only some linear
combinations thereof are estimable. The co-variables
include the elements of the integer vectors N1, IV,

mw?
e g

as

well as the vectors dt, ,,
Jx1 Il

the purpose of the network solution. Now we are going
to derive the expressions for linear combinations, which

dt, , b, . estimation of which is
Jix1

include these vectors.

As in the case of a user solution, the determination of
linear combinations formed by co-variables is performed
with the help of the S-transformation theory [2-5], i.e.,
by projecting all the points of the space of the variables
onto the S-subspace along the null-space ~ V, (6).

net.i
nex(2M +2J,41)

The dimension of the S-subspace equals the rank of the

matrix H,, (5) of the linear system (3). Similar to a
3Ty grnx;

user solution, the S-subspace of the network solution can
be obtained from the system of normal equations [2, 3]

1
(Snetj )r xnet.i = dO 1 (7)
dfh;xnx,  nx;x1 iy
where S, is the matrix of the rank dfh, and all the

nx; xdfl
dfh. column vectors are orthogonal to the S-subspace.
By projecting point coordinates, we get a new vector of
estimated variables x , ;

nx; x1

of the same dimension as the

original vector x,,, , (4). The relation of vectors x,, ., X,,, .
nx;x1 nx;xl nxx1
is defined by the expression
xnet.s.i — Pnel_i xnel_i (8)
nx; x1 nx;xnx; nx;x1

-1
= El. —Vne,_,- (S,JZ;,,)I Vner.i (Sij;fl)l

nx;xnx;  nxxdfh\  dfhyxnx;  nxxdfh, dfhxnx;

To preserve the integer nature of linear combinations of
integer co-variables, which are the components of the

where P

net.i
1X; XNX;

integer vectors V1 and N, included in the initial state
Jy Js X1

vector x, . (4), the columns of the matrix § L should be

net.i

nx;xdfh;
set in the same way as in the user solution [1]. Namely, all

should be

nx;x1

the elements in the columns of the matrix S

net.i
nx;xdfh;

set to zero, excluding the only element equal to 1.
The estimate X, of a new state vector X,,

nx;x1 nx;x1

in

the network solution can be found from the solution
of the extended system of linear equations obtained by
combining the linear systems (3) and (7)

Y H =

net.i 3 n:f”l( :net.i
3y x| | JUEaTEE O 3J5 ;x1
0 - SL xnetAsj+ 0 : (9)
net.i nx;x1
dfh;x1 dm ><‘nx dfh;x1

From the equation (S oy )r X = 0 (7), taking

} 1 dhd
dfh;xnx; !
into account the specific type of the columns of the matrix
L
Snetj >
nx; xdfh;

S
xnel s

nx;x1

nx;x1
it follows that the elements of the solution vector
. of the system (9) standing on the places defined

by the position of the units in the dfh, columns of the

matrix S, equal zero. But if it is known in advance that
nx; xdfh;
dfh. of the elements of the solution vector X, ; of the

<l
system (9) are zero, hence, the estimates of the remaining
rnkh, elements of the solution vector of the system (3)
can be obtained by solving a simpler system of the linear
equations

—
Ynet.i - Hnel.cmpr.i xnel.cmpr.i+ :i (10)
3epd 30y < —dfhy) (mx—dfiy 1 3751
where H,, ... is the compressed form of the
3y x(mx, ~dfh; )

initial matrix H,,,
3Jy xnx;

cut from the positions in which the units are located

(5), where the dfh. columns are

in the dfh. columns of the matrix S, ,;

nx;xdfh;

xnel .cmpr.i is the
(nxi —dfh; )xl

ROCKET-SPACE DEVICE ENGINEERING AND INFORMATION SYSTEMS Vol. 6, Iss. 2, 2019
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compressed state vector obtained from the initial state
vector X, ; , where all the zeroes are excluded. Hence, we

nx; x1

see that positions of ones in dfh, columns of the matrix
SJ_

net.i

<l
dfh, of the initial matrix H

3J5 xnx;
manipulation of dropping the columns makes the rank
of the compressed matrix H

net.cmpr.i
3Js; ><(nx, —dfh; )

determine the positions of excluded columns

(5). Nevertheless, this

match the rank

rnkh, of the initial matrix H,, (5). This requirement is
3Ty xnx;

satisfied if one of the M ground stations with the number
r (reference) 1< r <M is defined as reference and if the

. 1 . . .
matrix §,,; is constructed by merging three submatrices
nx;xdfh;
1 | oL 1 L . .
Snet.i - Snet.time.i Snet.Nl.i Sner.wa.i . The units in
nx;xdfh; nx,x3 nmex(dm=3)/2  nxx{(dm-3)/2

@l
three columns of the first submatrix .S, . .. are located
nx;x3

on the positions M+r, 2M+r, 3M+r, respectively. Placing

the units in the columns of the submatrix S, . .

nx;x3
we posit them in the same positions as the ionosphere-
free code dT,,, and phase dT} , , clock offsets and the
biases of the Melbourne-Wiibbena combination b,,, .

this way,

for the r-th ground station in the initial state vector x

net.i*

nx;x1
The location of units in (dfh-3)/2=M+]~1 columns of
. 1 1 . .
the submatrices S, v, » S,y , is determined by

nxpx(M+J;-1)  nxx(M+J; 1)

position of units in the spanning tree matrix STM
MxJ;

elements of which are either zero or one. The matrix

STM has the same dimension Mx ] as the scenario
MxJ;

matrix, while the number of units in STM equals M+
MxJ;

J. -1, and all these units constitute the unit-subspace of

the scenario matrix. Hence, STM can be shown by
MxJ;

highlighting in grey some units in the scenario matrix.
An example of such highlighting is shown in Table 1.

STM is obtained from the scenario matrix through
MxJ;

a special algorithm, which can be found in [2, 6-9]. In
particular, Prim’s algorithm applicable to weighted non-
directed graphs is briefly described as follows [2]:

1. Take the edge with the highest weight and place
two thereby connected nodes in the set V;

2. Take the set of edges that connect nodes from V-
V| to nodes from V, and select the edge with the highest
weight;

3. Add the node belonging to V-V, of the edges
selected in step 2 to V5

4. While V-V 20, go to step 2.

The number of units in STM , ie., M+]-1,

MxJ;
equals the number of columns of submatrices
s 1 . . .
Sonvii > Sy ;- ie, each unit of STM is
- - S hmw MXJ
mxx(M+J-1y e x(M+J;-1) i

placed in a certain way within the rows numbered
[=4M +3J,+1, 4M +3J,+J,

columns of the submatrix S,,i,,_ N1

nxx(M+J;-1)

numbers [ =4M +3J, +J, A1, 4M +3J. +2J,, of

of one of the

andintherowswith the

one of the columns of the submatrix S

net.N,, . i
nx;x(M+J,;-1)

to the following algorithm. All the units comprising the
scenario matrix are indexed by the first lower index in
the order of their location from the left to the right and
for rows from up to down in the range from 1 to J ..
Then, the units of the scenario matrix, which comprise

the matrix STM , are indexed by the second lower index
MxJ;

in the same order in the range from 1 to M+ J -1. As
a result, units comprising the matrix S7M , will have

MxJ

according

two indices, and the remaining units will have only one.
An example of such indexation is shown in Table 1.
Dual-indexed units comprising the matrix S7M are
MxJ;

highlighted in grey. Let us denote the first index of dual-
indexed unitsasp (pn =1, J5, ), while the second indexis v

(v=1,M +J,-1). Each dual-indexed unit corresponds

and S

net N1.i net.N, i °
nx(M+J;-1) nx, x(M+J,;-1)

The element 4M+3]+u of v-th column of the matrix

S,,i,,_N” is replaced by one, and the remaining

nxx(M+J;-1)
elements of this column are zero. Similarly, the element

4M+3]+], +u of v-th column of the matrix S, IR
nx;x(M+J,;-1)
replaced by one, while the remaining elements of this
column are zeroes.
A unique solution of the system (10) can be obtained if
the number of rows of the compressed matrix H

net.cmpr.i
35 (e, ~dfh; )

to the column v of the matrices S+
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is greater or equal to the dimension of the compressed
state vector H netempri > 1-€, the condition 3], > (nx -
3Jy x(nx;~dfh,)

dfhi) =2M+J+2] -1 should be fulfilled. Hence, we obtain
the following constraint Js, 2 2M+] -1, which should be
met to get a unique network solution.

In general, the analytical calculation of the vector
X,.s; by the formula (8), which will include linear

nx; x1

combinations of elements of the vectors N1, N

mw?
Tz Iz X1

as

well as the vectors dt_,, dt, ;and b, ,, is cumbersome. To
Jx1 o Jix1 Jix1

reduce the complexity, let us consider the computation
of the vector X, ,; for an extremely simplified case when

nx; x1

M=3, ] =4, for which the scenario matrix and STM are
given in Table 2. Wi

Table 2. SV visibility by the ground stations for the simplified
case with M=3, ] =4, ] =9

Numbers of SVs visible by
ground stations
m 1 2 3 4 I,
Ground 1 111 122 133 0 3
network | 2 L, 0 1, L, 3
stations
3 0 L 1 Ly 3

For the case M=3, J. =4, ], =9, the vector of the

variables X, .. (8) and the corresponding projection
42x1

matrix P, , will be quite bulky even in the simplified
42x42

case. Hence, the expressions below are presented only

for the subvectors of interest AD, , dt, , dt, ., b, .,
Mx1 4x1 4x1 4x1
N1, N, . of the vector X,, . (8) obtained by
ox 9x1 42x1

symbolic computations in MATLAB for r=1.

AD,;
AD,, =| AD,, |,
Mx1 AD,,
de,,—dT,
it - d’f—f —drT,,, )
4x1 dtp.i - dTp.m‘
dt:.i - dTp.rj

dt, . =

Ls.i
4x1

diy, —dl; ., + Xy N1 + 4,50 N,

mwl

diz, —dl; ., + kNI + 4,50 N,

mwl

dey, —dl;,, +Xp, NI +2,,, N,

mwl

i}, =T, + e (N = N+ N2 S0, (VD = N+ )
By =B + XN
b =B T h N
| By = + N ’
b:,tw - bmw.r + }\’mw (N ilnw.l -N rlnw.2 +N ;w.z)
_ o ;
0
0
0
N1, = NL - N1 + N1, - NI >
Ix1 0
NI =N} +N1;- N1+ NI - NI
NL - N1} + N1 - N1, + N1} - NT}
L 0 |
_ o _
0
0
0
N s = N, =NL,, + N1, - NT,, . (11)
0
N, —-NI} +N1!  —-NL ,+N1 NI,
N ,—N1: +N12 —NL  +N1 —NU
0

As can be seen from the expressions (11), the
elements of the vector AMDlT = [ADl_i AD,, AD3_,.]T of

uncompensated wet component of the zenith tropospheric
delays (m) at the locations of three ground stations, as
expected, are unbiased. The initial integer ambiguities

Nli and waj

9x1 9Ix1

are estimated with biases, i.e., as a part

of the linear combinations N1, and N,  ,, which
9x1 9x1
are also integer. We are interested in the vectors @t ,
4x1

dt, ,and b, . which are also estimated with biases, i.e.,

4x1 4x1

are composed of the linear combinations d, ,, dt,

4x1 1

and b However, as it is shown in (11), for all J SV,

mw.s.i*
4x1

the estimation biases of the variables included in the

vector df, ; are the same and equal to ionosphere-free
4x1
code clock offsets dTM. of the reference station; the
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estimation biases of the variables included in the vector
dt, . are accurate within an integer combination of the
4x1

wavelengths A A, s> and the estimation biases of

A nifi

the variables included in the vector b are accurate

mw.i
4x1

within an integer number of the wavelengths A . It leads
to respective biases in the residuals of the ionosphere-

free code Ap{f”. = p{}”. -R/. +dl‘f‘ifrj, carrier phase
i j j
AL' - L - Rc.i + dtL.ifV,i

i — Lifpi
Amw] =mw/ +b!

mw.i

and Melbourne-Wiibbena

combinations measurements

included in the left part of the system of equations in the
user solution. However, the properties of this system are
such that these biases in the left part do not change the

estimates of the unambiguously estimated variables Ax,

Ay, Az, AD,. Thus, to obtain estimates of the variables

Ax, Ay, Az, AD, inthe user solution instead of estimates
of variables which are components of the vectors df,,
Jx1
dt, . b, , one can use their biased equivalents, which
Jix1 J;
are components of the vectors df, _ ,
Jix1l

dtL.s.i’ bmms.i (11)

Jxl U

The algorithms of solving the linear equation system
(10) taking into account the integer nature of the part of
its variables, are the basis of the algorithms of estimating

the variables which are the part of the vectors df_
Jix1l
;> which are the aim of solving the

dtL.”, and b
J;x1
network solution of the Integer PPP. Unfortunately,

mw.s.
Jix1

the restrictions for the article’s volume do not allow us
to explore these algorithms in this paper. We can only
refer a reader to existing literature on the methods of
linear recurrent estimating [10, 11] and on phase integer
ambiguity resolution [12-15].

Examples of determination of precise
corrections and their features

Two versions of the network solution were
implemented. The first solution was obtained with using
5 European stations assuming the permanence of the SV
constellation (all stations of the ground network receive
measurements from the same set of 6 SV's). Figure 2 shows
decoupled code and carrier phase satellite corrections
calculated for one of the 6 satellites in the first version of
the network solution.

According to (11), the bias between code and phase
corrections shown in Fig. 2 may differ from the true one

> A It

nifi > Pemifi*
can be seen that this bias is constant during the permanent
observation scenario.

by an integer number of the wavelengths ),

Decoupled satellite corrections (m) Time (min)
—43174 +— . . w . . w . . w . . . .
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70
—43175
I~ :
N /
—43177 T~
I T
V.1 [ nﬁ —

—43178

14
I Uy

dtée?

—-43181

AW
AN P

—43182

Fig. 2. Decoupled satellite corrections (code and phase) for one of 6 SVs calculated for the first version of the network solution.
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Fig. 3. SDCM network stations used in the second version of a network solution.

Decouplfid satellite corrections (m)
0 10 20 30

Time (min)
40 50 60 70

—148659

—148662

dtj .

— 148665
— 148668 D

—148671 o -

— 148674
— 148677

—148680

— 148683

Fig. 4. Decoupled satellite corrections (code and phase) for one of the SVs calculated in the second version of a network
solution.

Within the second version of a network solution,
measurements from 10 stations of Russian SBAS (SDCM)
network were used (highlighted in Fig. 3 by green circles),
taking into account changing satellite constellation. The
receivers installed at different stations of the network
had dissimilar characteristics; hence, the accuracy of
the estimation of decoupled satellite corrections was
somewhat degraded which caused overall reduction of
the accuracy of the user solution.

Figure 4 [16] shows the decoupled code and carrier
phase satellite corrections calculated for one of the

satellites in the second version of the network solution.
The graph shows jumps in phase corrections df] at the
moments of change in the observation scenario and/or
change of the matrix STM associated with changes in

MxJ;

the estimated linear combinations in the components of

the vector dt, .
Jix1

The results of the user solution applying the evaluated
corrections shown in Figs. 2 and 4 were already presented

and discussed in [1].
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Conclusion

Algebraic principles of network solutions for
PPP including ambiguity resolution of carrier phase
measurements in GNSS with CDMA are considered.

Examples of determination of precise satellite
corrections for the GPS Integer PPP are presented.
Significant reduction in convergence time required to
achieve high-precision positioning when using precise
satellite corrections in comparison with the Float PPP is
demonstrated.

As it follows from the expression for the vector
that is included into (11), in the case of a timely

dtp.s.i

4x1
determination of the ionosphere-free code clock offset
dT,, , of a reference ground station relative to the GNSS
time scale, there appears a possibility of rapid evaluation

of the ionosphere-free code clocks offsets dt!, j=1,J,

of all the ], SV's which are visible by ground stations at the
i-th epoch. This data can be used to increase the accuracy
of broadcast clock corrections transmitted in the SV
navigation messages.

The experience gained so far shows the urgent need
for the methods of receiver calibration to deal with the
algorithms of determination of precise decoupled satellite
corrections.
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