РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ 2015, том 2, выпуск 4, с. 40–49

АЭРОКОСМИЧЕСКИЕ МЕТОДЫ ЗОНДИРОВАНИЯ ЗЕМЛИ, ПЛАНЕТ И ДРУГИХ КОСМИЧЕСКИХ ОБЪЕКТОВ. ГЕОЭКОЛОГИЯ И КОСМИЧЕСКИЕ СИСТЕМЫ ПОИСКА И СПАСАНИЯ

УДК 621.396

Адаптивная фильтрация изображений, искаженных турбулентной атмосферой

К. Н. Свиридов

д.т.н., проф., АО «Российские космические системы»

e-mail: sviridovkn@yandex.ru

Аннотация. Рассматриваются особенности формирования средних длинно-экспозиционных и средних короткоэкспозиционных изображений ДЗЗ, искаженных турбулентной атмосферой. Представлены аналитические выражения для средней длинно-экспозиционной и средней коротко-экспозиционной оптических передаточных функций (ОПФ) системы атмосфера-телескоп. Рассмотрены алгоритмы априорной пространственной фильтрации. Предложен и исследован адаптивный алгоритм последетекторной фильтрации средних изображений с формированием и максимизацией функций резкости изображения.

Ключевые слова: турбулентная атмосфера, оптическая передаточная функция (ОПФ), средняя длинно-экспозиционная ОПФ, средняя коротко-экспозиционная ОПФ, пространственная фильтрация, адаптивная фильтрация с максимизацией функции резкости изображения

Adaptive Filtration of the Images, Distorted by Turbulent Atmosphere

K. N. Sviridov

doctor of engineering science, professor Joint Stock Company "Russian Space Systems"

e-mail: sviridovkn@yandex.ru

Abstract. Peculiarities of formation average long-exposures and average short-exposures images, distorted by turbulent atmosphere, areconsidered. Analitic expressions for average long-exposure and average short-exposure optical transfer functions (OTF) of system atmosphere-telescope are presented. Algorithms of apriori spatial filtration are considered. Adaptive algorithm of postdetection filtration of average images by formation and maximized function of sharpening images is proposed and investigated.

Key words: turbulent atmosphere, optical transfer function (OTF), average long-exposure OTF, average short-exposure OTF, spatial filtration, adaptive filtration by maximization of function sharpening for image

Введение

Наличие турбулентной атмосферы Земли между зондируемым участком земной поверхности и космическим аппаратом ДЗЗ существенно ограничивает информационные возможности систем ДЗЗ [1]. Возникают две проблемы: проблема «видения» через турбулентную атмосферу и проблема «изопланатичности» зондируемого участка земной поверхности.

Суть этих проблем состоит в том, что проблема «видения» накладывает ограничения на минимальный размер деталей, разрешаемых системой атмосфера-телескоп на зондируемом участке земной поверхности, а проблема «изопланатичности» ограничивает максимальный размер зондируемого участка земной поверхности, который еще является пространственно-инвариантным к атмосферным искажениям, то есть эта проблема ограничивает поле зрения систем ДЗЗ.

Эти проблемы существенно зависят от условий наблюдения, и в частности от условий регистрации изображений ДЗЗ.

Если время регистрации au_{\Im} превышает интервал временной корреляции атмосферных флуктуаций τ_{Λ} (так называемого времени «замороженности» турбулентностей атмосферы), говорят о длинно-экспозиционной регистрации, а если время регистрации au_{\Im} меньше au_{A} , то говорят о коротко-экспозиционной регистрации. Эти два крайних случая и являются предметом наших исследований. Они существенно отличаются характером атмосферных искажений. Так, если длинно-экспозиционное изображение, усредненное по атмосферным искажениям за время $\tau_{\Im} > \tau_{A}$, обладает худшим разрешением, чем мгновенное коротко-экспозиционное изображение, регистрируемое за время $\tau_{\Im} < \tau_{A}$, то оно является пространственно-инвариантным к атмосферным искажениям во всем поле зрения системы атмосфера-телескоп, в отличие от короткоэкспозиционного изображения, состоящего в этом поле из ряда мгновенных областей изопланатичности, пространственно-неинвариантных к атмосферным искажениям.

Средняя оптическая передаточная функция (ОПФ) систем ДЗЗ

На ранней стадии развития техники ДЗЗ желание работать в широком поле зрения стимулировало получение длинно-экспозиционных изображений ДЗЗ как в отечественных космических аппаратах ДЗЗ «Ресурс-ДК-1» [2] и «Ресурс-П» [3], так и в американских космических аппаратах ДЗЗ «QuickBird», «WorldView» и «GeoEye» [4]. Используемая в них при детектировании технология ВЗН (временной задержки и накопления) приводит к регистрации длинно-экспозиционного изображения ДЗЗ, усредненного по атмосферным искажениям.

Характеристикой этого изображения является средняя длинно-экспозиционная оптическая передаточная функция, определяемая [5]:

$$\begin{aligned} \langle \tau(\mathbf{f}) \rangle_{\mathbf{z}-\mathbf{y}} &= \langle \tau(\mathbf{f}) \rangle = \\ &= \tau_0(\mathbf{f}) \exp\{-3,44[(\overline{\lambda}F\mathbf{f}/r_0(\overline{\lambda},H)]^{5/3}\}. \end{aligned}$$
(1)

С развитием техники ДЗЗ появились новые технологии, позволяющие учитывать и компенсировать атмосферные искажения.

Так нами был предложен способ комбинированного использования длинно-экспозиционного изображения и серии из N спектрально-фильтруемых коротко-экспозиционных изображений, независимых по атмосферным искажениям [6]. Этот способ позволил получать в результате детектирования и обработки среднее коротко-экспозиционное изображение, пространственно-инвариантное к атмосферным искажениям и характеризуемое средней коротко-экспозиционной оптической передаточной функцией, определяемой [5]

$$\langle \tau(\mathbf{f}) \rangle_{{}_{\mathsf{K}-\mathfrak{I}}} = \tau_0(\mathbf{f}) \times \\ \times \exp\{-3,44[\overline{\lambda}F\mathbf{f}/r_0(\overline{\lambda},H)]^{5/3}[1-(\overline{\lambda}F\mathbf{f}/D)^{1/3}]\}.$$

$$(2)$$

Аппаратурное достижение среднего короткоэкспозиционного изображения рассмотрено в работе [21].

В выражениях (1) и (2) $\mathbf{f} = (\rho_1 - \rho_2)/\overline{\lambda}F$ – пространственно-частотный вектор в апертуре ρ телескопа ДЗЗ, $\overline{\lambda}$ – средняя длина волны солнечного излучения подсвета ($\overline{\lambda} = 0,5$ мкм), F – фокусное

расстояние телескопа ДЗЗ, $\tau_0(f)$ — оптическая передаточная функция телескопа ДЗЗ, определяемая для круглой апертуры диаметра D соотношением

$$\tau_{0}(f) = \begin{cases} \frac{2}{\pi} \left[\arccos \frac{(\overline{\lambda}Ff)}{D} - \frac{(\overline{\lambda}Ff)}{D} \sqrt{1 - \left(\frac{\overline{\lambda}Ff}{D}\right)^{2}} \right], \\ \text{для } \overline{\lambda}Ff \leqslant D, \\ 0, \quad \text{для } \overline{\lambda}Ff > D, \end{cases}$$
(3)

а $r_0(\overline{\lambda}, L)$ — пространственный радиус корреляции атмосферных флуктуаций светового излучения (так называемый параметр Фрида), зависящий от протяженности трассы распространения в турбулентной атмосфере — L, длины волны — $\overline{\lambda}$, степени турбулентности вдоль трассы распространения — $C_n^2(h)$, природы неискаженного волнового фронта и определяемый для сферической волны как [5]

$$r_0(\overline{\lambda},L) = \left[0,423\left(\frac{2\pi}{\overline{\lambda}}\right)^2 \int_0^L C_n^2(h)\left(\frac{h}{L}\right)^{5/3} dh\right]^{-3/5},$$
(4)

где $C_n^2(h)$ — высотный профиль структурного параметра флуктуаций показателя преломления атмосферы, L — протяженность турбулентной трассы вертикального распространения, равная $L \approx 10$ км, а h — высота над зондируемой поверхностью Земли.

Эти функции средних ОПФ (1) и (2) являются аналитически определенными и могут быть использованы при фильтрации получаемых средних изображений. Единственным неизвестным параметром здесь является величина пространственного радиуса корреляции атмосферных флуктуаций $r_0(\overline{\lambda}, L)$, определяемая для КА ДЗЗ, находящегося на высоте H при $\overline{\lambda} = 0,5$ мкм, соотношением [7]

$$r_0(H) = 5.95 \cdot 10^{-6} H \{ I(H/L) \}^{-3/5}$$
 [M], (5)

где

$$I(H/L) = \Gamma(7/3; H/L) / \Gamma(7/3),$$
 (6)

$$\Gamma(a,b) = \int_{0}^{b} dx \cdot x^{a-1} e^{-x}$$
 — неполная гамма-функция.

Получаемые средние длинно-экспозиционные [2, 3, 4] и средние коротко-экспозиционные [6, 21] изображения ДЗЗ могут быть улучшены по разрешению алгоритмами пространственной фильтрации.

Пространственная фильтрация изображений

Зарегистрированное изображение объекта в общем случае можно представить в виде

$$I_{\scriptscriptstyle \rm H}(\mathbf{l}) = H\left[\int I_0(\mathbf{r})I_{\rm A-T}(\mathbf{l},\mathbf{r})d\mathbf{r}\right] + I_{\rm \phi}(\mathbf{l}),\qquad(7)$$

где $I_0(\mathbf{r})$ — истинное распределение интенсивности объекта, $I_{A-T}(\mathbf{l}, \mathbf{r})$ — импульсный отклик системы атмосфера-телескоп (функция рассеяния точки (ФРТ)), H — нелинейность, обусловленная процессом регистрации изображения и $I_{\phi}(\mathbf{l})$ — некоторый аддитивный шум в детектируемом изображении.

Обычно используют более простую модель детектируемого изображения, в которой пренебрегают нелинейностью процесса детектирования H [1], что допустимо, например, при рассмотрении слабоконтрастных фотографических изображений и изображений с телевизионных и ПЗС-детекторов, кроме того, предполагают, что система, формирующая изображение, является пространственно-инвариантной (изопланатичной), то есть для нее

$$I_{\mathrm{A-T}}\left(\mathbf{l},\mathbf{r}\right) = I_{\mathrm{A-T}}\left(\mathbf{l}-\mathbf{r}\right). \tag{8}$$

В этом случае детектируемое искаженное изображение (7) можно представить интегралом свертки вида

$$I_{\mu}(\mathbf{l}) = \int I_0(\mathbf{r}) I_{\mathrm{A}-\mathrm{T}}(\mathbf{l}-\mathbf{r}) d\mathbf{r}] + I_{\phi}(\mathbf{l}).$$
(9)

Пространственная фильтрация изображений вида (9), впервые предложенная и исследованная в 50-х гг. XX в. Аббе, Портером, Цернике и Марешалем [8], требует выполнения традиционной последовательности операций, представленной на рис. 1. Следует заметить, что даже в идеальном случае, когда шум отсутствует, $I_{\phi}(\mathbf{l}) = 0$, а импульсный отклик системы атмосфера-телескоп

1 0

Рис. 1. Блок-схема алгоритма пространственной фильтрации

 $I_{\rm A-T}({f l}-{f r})$ является точно известным, решение интегрального уравнения Фредгольма первого рода

$$I_{\mu}(\mathbf{l}) = \int I_0(\mathbf{r}) I_{\mathrm{A-T}}(\mathbf{l} - \mathbf{r}) \, d\mathbf{r}], \qquad (10)$$

к которому сводится проблема фильтрации, сопряжено с известными трудностями.

Это объясняется тем, что подобное интегральное уравнение является плохо обусловленным и, согласно лемме Римана–Лебега, сколь угодно малые возмущения $I_{\mu}(\mathbf{l})$ в правой части уравнения (10) могут привести к сколь угодно большим погрешностям в определении $\widehat{I_0}(\mathbf{r})$. В реальных условиях проблема пространственной фильтрации изображений становится еще более сложной.

Это обусловлено наличием аддитивных и мультипликативных шумов, нелинейностью и неинвариантностью процесса детектирования изображений, а главное, ограниченностью и чаще отсутствием априорной информации о $H[\cdot]$, $I_{\phi}(\mathbf{l})$ и $I_{A-T}(\mathbf{l}, \mathbf{r})$.

1. Априорная фильтрация

Известны: инверсная [9,10], гомоморфная [11] и некоторые другие [12] методы пространственной

фильтрации, основанные на априорном знании указанных выше функций.

Для сравнения возможностей их использования применительно к проблеме атмосферного видения был проведен эксперимент [13] по машинному моделированию искаженного атмосферой и аддитивным шумом изображения участка лунной поверхности и его последующей пространственной фильтрации. Результаты для различных отношений сигнал/шум представлены на рис. 2 и рис. 3. Отсюда видно, что при большом отношении сигнал/шум возможно получение дифракционно-ограниченных изображений. При этом наблюдается малое отличие в результатах фильтрации различными методами, ибо при большем отношении сигнал/шум все они стремятся к инверсной фильтрации. Гомоморфный фильтр визуально дает более удовлетворительное качество изображения, чем линейный винеровский фильтр. Это можно объяснить лучшим согласованием нелинейного гомоморфного фильтра с нелинейными характеристиками зрительной системы человека.

2. Апостериорная фильтрация

В идеальном случае для точного определения ОПФ системы атмосфера-телескоп необходимо иметь некоторый точечный источник в изопланатичной области с зондируемым участком.

Реально при наблюдениях ДЗЗ подобная возможность, как правило, отсутствует и возникает необходимость апостериорного определения ОПФ системы ДЗЗ, сформировавшей изображение, по самому зарегистрированному изображению. При этом искомая для фильтрации ОПФ будет существенно зависеть как от условий получения изображений (случаи длинно-экспозиционной и коротко-экспозиционной регистрации), так и от особенностей их последующей обработки (случаи обработки одного или серии изображений).

Первым методом апостериорной пространственной фильтрации применительно к проблеме «видения» явился метод фильтрации среднего длинно-экспозиционного изображения [14]. ОПФ системы атмосфера-телескоп $\langle I_{A-T}(\mathbf{f}) \rangle$ для длинноэкспозиционного изображения ДЗЗ $\langle I_{\mu}(\mathbf{l}) \rangle$ является аналитически известной и определяемой (1). При этом фильтрующая функция $\widetilde{F}(\mathbf{f})$ инверсного фильтра [9] представима в виде

$$\widetilde{F}(\mathbf{f}) = \frac{\widetilde{I}_{T_0}(\mathbf{f})}{\langle \widetilde{I}_{\mathrm{A-T}}(\mathbf{f}) \rangle} = \frac{\tau_0(\mathbf{f})}{\tau_{\mathcal{I}-\mathfrak{I}}(\mathbf{f})} = \\ = \exp\left\{3,44\left[(\overline{\lambda}F\mathbf{f})/r_0(\overline{\lambda},H)\right]^{5/3}\right\}. \quad (11)$$

Для среднего коротко-экспозиционного изображения, получаемого в [6], ОПФ системы атмосфера-телескоп определяется (2), а фильтрующая функция $\widetilde{F}(\mathbf{f})$ инверсного фильтра имеет вид

$$\widetilde{F}(\mathbf{f}) = \frac{\tau_0(\mathbf{f})}{\tau_{\mathrm{K}-\vartheta}(\mathbf{f})} = \exp\left\{3,44\left[(\overline{\lambda}\mathrm{F}\mathbf{f})/r_0(\overline{\lambda},H)\right]^{5/3} \cdot \left[1 - (\overline{\lambda}F\mathbf{f})/D\right]^{1/3}\right\}.$$
(12)

Для фильтрации среднего длинно-экспозиционного изображения участка лунной поверхности в модельном эксперименте [13] были использованы фильтрующая функция гомоморфного фильтра вида

$$\widetilde{F}(\mathbf{f}) = \left[\frac{\tau_0^2(\mathbf{f})}{\tau_0^2(\mathbf{f})\exp\left\{-6.88\left[\overline{\lambda}F\mathbf{f}/r_0(\overline{\lambda})\right]^{5/3}\right\} + \widetilde{\Phi}_N(\mathbf{f})/\widetilde{\Phi}_O(\mathbf{f})}\right]^{1/2}$$
(13)

и фильтрующая функция линейного винеровского фильтра вида

$$\widetilde{F}(\mathbf{f}) = \frac{\tau_0(\mathbf{f}) \exp\left\{-3.44[(\overline{\lambda}F\mathbf{f})/r_0(\overline{\lambda})]^{5/3}\right\}}{\tau_0^2(\mathbf{f}) \exp\left\{-6.88[(\overline{\lambda}F\mathbf{f})/r_0(\overline{\lambda})]^{5/3}\right\} + \widetilde{\Phi}_N(\mathbf{f})/\widetilde{\Phi}_O(\mathbf{f})}.$$
(14)

Из полученных выражений для фильтрующих функций средних изображений видно, что неизвестным параметром, необходимым для их реализации, является величина пространственного радиуса корреляции атмосферных флуктуаций $r_0(\bar{\lambda})$, а также величины спектральных плотностей объекта $\tilde{\Phi}_O(\mathbf{f})$ и шума $\tilde{\Phi}_N(\mathbf{f})$. Последние могут быть определены по зарегистрированному изображению на основании известных методов [15].

Рис. 2. Моделирование искаженных изображений: *a*) истинное распределение интенсивности объекта; *б*) дифракционно-ограниченное изображение; *в*) импульсный отклик системы атмосфера-телескоп; *г*) изображения объекта, искаженные атмосферой и аддитивным шумом фона

Рис. 3. Априорная пространственная фильтрация модельных изображений: *a*) винеровская фильтрация; *б*) гомоморфная фильтрация

Рис. 4. Апостериорная инверсная фильтрация среднего длинно-экспозиционного изображения планеты Сатурн: *а*) исходное для фильтрации изображение; *б*) недостаточная коррекция; *в*) перекоррекция

Что касается определения величины $r_0(\overline{\lambda})$, то в традиционных методах пространственной фильтрации длинно-экспозиционного изображения астрономического объекта [16] для этого осуществляют перебор величин неизвестного параметра в диапазоне его возможных значений. При этом пространственная фильтрация оказывается неточной. Пример недокорректированного и перекорректированного изображений, полученных при переборе параметра $r_0(\overline{\lambda})$ в инверсном фильтре (11), представлен соответственно на рис. 4, б и в.

3. Адаптивная фильтрация

Для устранения отмеченных недостатков, обусловленных произволом выбора величины параметра $r_0(\overline{\lambda},)$ в фильтрующей функции и субъективизмом оценки качества отфильтрованного изображения оператором, нами был предложен другой подход к фильтрации как длинно-экспозиционного, так и коротко-экспозиционного изображения, основанный на цифровой адаптации спектра зарегистрированного изображения [17]. При этом если для среднего изображения адаптивной коррекции подвержен только модуль пространственного спектра, то для мгновенного коротко-экспозиционного изображения адаптивной коррекции должны быть подвержены как модуль, так и фаза пространственного спектра. Цифровая адаптация спектра коротко-экспозиционного изображения ДЗЗ будет рассмотрена нами позже в отдельной статье.

Здесь же в соответствии с предложенным подходом при фильтрации среднего длинно-экспозиционного или среднего коротко-экспозиционного изображения фильтрующими функциями $\tilde{F}(\mathbf{f})$, определяемым (11)–(14), сначала в фильтрующей функции $\tilde{F}(\mathbf{f})$ выбирают максимально возможное значения величины параметра $r_0(\overline{\lambda}, H)$, определяемое в зависимости от высоты H космического аппарата ДЗЗ, по эмпирической формуле [18]

$$r_{0_{\text{MAKC}}}(\overline{\lambda}, H) = \frac{H}{L} r_0(\overline{\lambda}, L).$$
(15)

Затем формируют функцию резкости отфильтрованного изображения и максимизируют ее при адаптивной коррекции модуля пространственного спектра путем последовательного изменения (а точнее, уменьшения) величины параметра $r_0(\overline{\lambda}, H)$ в выражении для функции $\widetilde{F}(\mathbf{f})$ и итерационного повторения указанной последовательности операций. При этом весь процесс адаптивной фильтрации осуществляется автоматически без вмешательства оператора и оканчивается при достижении функцией резкости глобального максимума. Блок-схема описанного алгоритма апостериорной пространственной фильтрации представлена на рис. 5, а пример его реализации для различных циклов адаптации длинно-экспозиционного изображения планеты Юпитер дан на рис. 6.

В качестве функции резкости изображения здесь была использована функция резкости вида [19]

$$S = -\int_{\Omega_{\mathsf{H}}} \widehat{I}_{0}^{\mathsf{K}_{2}}\left(\mathbf{l}\right) d\mathbf{l} = -\int_{\Omega} |\widehat{I}_{0}^{\mathsf{K}}\left(\mathbf{f}\right)|^{2} d\mathbf{f}, \qquad (16)$$

где Ω и — область изображения, Ω — область пространственного спектра, $\widehat{I}_0^K(\mathbf{f})$ — оценка пространственного спектра для оценки адаптивно

Рис. 5. Блок-схема алгоритма адаптивной фильтрации среднего изображения

отфильтрованного изображения $\widehat{I}_0^K(\mathbf{l})$, а K — номер итерации адаптивного поиска глобального максимума функции резкости. $\widehat{I}_0^K(\mathbf{l})$, а K — носферным искажениям. Проведенные эксперименты по фильтрации средних длинно-экспозиционных

Заключение

В данной статье рассмотрен и исследован адаптивный способ апостериорной пространственной фильтрации изображений, усредненных по атмосферным искажениям. Проведенные эксперименты по фильтрации средних длинно-экспозиционных изображений космических объектов, наблюдаемых с Земли через турбулентную атмосферу, подтвердили возможность повышения разрешения зарегистрированных изображений. Учитывая принцип «взаимности» распространения световых волн

Рис. 6. Адаптивная фильтрация среднего изображения планеты Юпитер: *a*) исходное для фильтрации изображение; *б*), *в*) и *г*) результаты амплитудной адаптивной фильтрации соответственно при $\hat{r}_0^K = 15$ см, 10 см и 5 см

в турбулентной атмосфере [20], можно утверждать, что рассмотренные в данной статье алгоритмы могут быть эффективно использованы и в обратном направлении, то есть для адаптивной фильтрации средних изображений ДЗЗ. Это позволит улучшить разрешение исходных зарегистрированных изображений земной поверхности и повысит их коммерческую привлекательность.

Список литературы

- Свиридов К. Н. Технологии высокого разрешения оптических систем атмосферного видения. ISBN 978-3-65969-676-3. LAP (LAMBERT Academic Publishing), 2015.
- 2. Петри Г. Российский спутник «Ресурс-ДК1»: альтернативный источник данных сверхвысокого разрешения // Геоматика, 2010, № 4, с. 38-42.

- 3. *Кирилин А. Н. и др.* Космический аппарат «Ресурс-П» // Геоматика, 2010, № 4, с. 23–26.
- Лавров В. В. Космические съемочные системы сверхвысокого разрешения // Геоинформационный портал ГИС Ассоциации, 2010, № 2.
- Fried D.L. Optical Resolution through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures // JOSA, 1966. V. 56, № 10, p. 1372–1379.
- Свиридов К. Н. Способ дистанционного зондирования Земли (ДЗЗ), заявка ОАО «Российские космические системы» на изобретение № 2013125540 от 03.06.2013. ПатентРФ № 2531024 от 20.08.2014.
- Fried D. L. Limiting Resolution Looking Down Through the Atmosphere // Journal of the Optical Society of America, 1966. V. 56, p. 1380–1384.
- 8. *Tsujinchi J.* Correction of optical images by compensation of aberrations and by spatial frequency filtering

in «Progress in Optics». Ed. E. Wolf, North-Holland, Amsterdam. V. 2, 1963, p. 130.

- 9. *Fienup J. R.* Space Object Imaging through the Turbulent Atmosphere // Proc. of the SPIE «Applications of Digital Image Processing», 1978. V. 149, p. 72.
- Harris J. L., Sr. Image Evaluation and Restoration // J. Opt. Soc. Am., 1966. V. 56, p. 569.
- 11. *Cole E.R.* The Removal of Unknown Image Blurs by Homomorphic filtering // Dept. of Computer Science University of Utah, ARPA Technical Report, UTEC-CSC-74-029, June, 1974.
- 12. Оппенгейм А.В., Шафер Р.В. Цифровая обработка сигналов. М.: Связь, 1979.
- 13. *Breedlove J. R., Jr.* Digital Image Processing of Simulated Turbulence and Photon Noise Degraded Images of Extended Objects // Proc. of the SPIE «Imaging through the Atmosphere», 1976. V. 75, p. 155.
- McGlamery B. L. Restoration of Turbulence-Degraded Images // J. Opt. Soc. Am., 1967. V. 57, p. 293.
- Helstrom C. W. Image Restoration by the Method of Least Squares // J. Opt. Soc. Am., 1967. V. 57, p. 297.

- 16. Дудинов В.Н., Цветкова В.С., Кришталь В.А., Хованский Н.А. Обработка астрономических изображений методами когерентной оптики // Вестник ХГУ, 1974, № 117, с. 19.
- 17. Свиридов К.Н., Бакут П.А., Ряхин А.Д., Устинов Н.Д. Адаптивный способ формирования изображения. Авторское свидетельство № 190078 от 04.07.1983.
- Свиридов К. Н. О предельном разрешении аэрокосмических систем дистанционного зондирования Земли (ДЗЗ) // Ракетно-космическое приборостроение и информационные системы, 2014, т. 1, вып. 1, с. 34–40.
- Muller R.A., Buffington A. Real-time correction of atmospherically degraded telescope Images through image sharpening // J. Opt. Soc. Am., 1974. V. 64, p. 1200.
- 20. *Shapiro J. H.* Reciprocity of the turbulent atmosphere // J. Opt. Soc. Am., 1971, 61, p. 492.
- Свиридов К. Н. Дистанционное зондирование Земли с адаптивной компенсацией случайных наклонов волнового фронта // Ракетно-космическое приборостроение и информационные системы, 2015, т. 2, вып. 3, с. 12–22.