РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ 2018, том 5, выпуск 1, с. 28–38

____ КОСМИЧЕСКИЕ НАВИГАЦИОННЫЕ СИСТЕМЫ И ПРИБОРЫ. ____ РАДИОЛОКАЦИЯ И РАДИОНАВИГАЦИЯ

УДК 62-932.2 DOI 10.30894/issn2409-0239.2018.5.1.28.38

Методика определения аппаратных невязок ГНСС-измерений псевдодальности по фазе несущей бортовой навигационной системы низкоорбитальных КА

А.П.Фурсов, к.т.н., contact@spacecorp.ru

АО «Российские космические системы», Москва, Российская Федерация

А.А.Фурсов, contact@spacecorp.ru

АО «Российские космические системы», Москва, Российская Федерация

В. С. Вдовин, contact@spacecorp.ru

АО «Российские космические системы», Москва, Российская Федерация

А.В.Зайчиков, contact@spacecorp.ru

АО «Российские космические системы», Москва, Российская Федерация

3. А. Позяева, contact@spacecorp.ru

АО «Российские космические системы», Москва, Российская Федерация

Аннотация. При использовании бортовой аппаратуры спутниковой навигации (ACH) на низкоорбитальных (HO) КА актуальной является проблема получения адекватной оценки аппаратных погрешностей ACH по реальным результатам навигационных наблюдений при отсутствии эталонных орбиты или измерений. В статье предлагается методика оценки аппаратной погрешности ГНСС-измерений псевдодальности по фазе несущей (ФН) частоты, получаемых бортовой ACH, устанавливаемой на HOKA. Аппаратная погрешность упомянутых измерений определяется косвенным образом: по так называемым двойным разностям исходных измерений, позволяющим исключить подавляющую часть систематических ошибок.

Представлены результаты применения этой методики по двум частным выборкам измерений (S1, S2), каждая длительностью 5 часов для одного из отечественных КА, подобных КА космической системы JASON. Оценка погрешностей измерений ФН осуществлялась для радиосигналов в частотных диапазонах L1, L2 навигационных КА (НКА) системы ГЛОНАСС.

Ключевые слова: навигационные системы, навигационные измерения, оценка точности измерений, низкоорбитальный КА, аппаратные погрешности, двойные разности

РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ 2018, том 5, выпуск 1, с. 28–38

_ КОСМИЧЕСКИЕ НАВИГАЦИОННЫЕ СИСТЕМЫ И ПРИБОРЫ. _____ РАДИОЛОКАЦИЯ И РАДИОНАВИГАЦИЯ

Method for Hardware Error Evaluation of the Onboard Navigation System of LEO Satellites in GNSS Pseudorange Measurements by Carrier Frequency Phase

A. P. Fursov, Cand. Sci. (Engineering), contact@spacecorp.ru Joint Stock Company "Russian Space Systems", Moscow, Russian Federation

A. A. Fursov, contact@spacecorp.ru

Joint Stock Company "Russian Space Systems", Moscow, Russian Federation

V. S. Vdovin, contact@spacecorp.ru

Joint Stock Company "Russian Space Systems", Moscow, Russian Federation

A. V. Zaichikov, contact@spacecorp.ru

Joint Stock Company "Russian Space Systems", Moscow, Russian Federation

Z. A. Pozyaeva, contact@spacecorp.ru

Joint Stock Company "Russian Space Systems", Moscow, Russian Federation

Abstract. When using the onboard satellite navigation equipment (SNE) of LEO spacecraft, there arises a problem of getting adequate evaluation of the hardware errors of SNE by real results of navigation observations without a reference orbit or measurements. This article proposes a technique of hardware error evaluation of pseudorange measurements of the carrier frequency phase received by the onboard SNE installed on LEO satellites. Hardware error of the mentioned measurements is determined indirectly by the so-called double differences of the initial measurements, which make it possible to rule out the overwhelming portion of systematic errors.

The results of applying this technique on two particular samples (S1, S2) of measurements with durations of 5 hours each for one of Russian spacecraft similar to spacecraft of the JASON space system are presented. Evaluation of phase measurement accuracy was performed for radio signals in the frequency ranges L1, L2 of GLONASS navigation satellites.

Keywords: navigation systems, navigation measurements, evaluation of measurement accuracy, LEO satellite, hardware errors, double differences

Введение

Оценка погрешностей результатов навигационных измерений, подверженных случайным и неизвестным систематическим невязкам, при отсутствии контрольных измерений, по крайней мере, на порядок более точных в общем случае невозможна или существенно усложняется. При определенных условиях, если удается исключить систематические невязки измерений и найти адекватное представление измеряемой функции, может быть определена оценка случайной («шумоподобной») составляющей погрешности результатов измерений как стационарного процесса.

Предлагаемая методика разработана для оценки аппаратной погрешности результатов измерений ФН, полученных АСН НОКА при использовании НКА ГЛОНАСС и GPS. Применение данной методики и технология ее реализации рассмотрены применительно к одному из отечественных НОКА (далее — ГКА).

Упомянутая методика может быть использована для оценки аппаратной погрешности ГНСС-измерений ФН в АСН НОКА различного назначения.

1. Методика оценивания погрешностей измерений псевдодальности по фазе несущей

Определение дисперсии погрешностей любых несмещенных измерений, подверженных случайным невязкам, в общем случае сводится к определению вектора невязки измерений, составляющими которого являются разности результатов измерений и их истинных расчетных значений (измеряемой функции). Если измеряемая функция известна, а случайные погрешности измерений имеют ограниченную дисперсию и не смещены, то несмещенная оценка дисперсии есть квадрат нормы вектора невязок, деленный на размерность этого вектора за вычетом количества степеней свободы вектора невязок.

На практике результаты измерений ФН упомянутым выше условиям не удовлетворяют из-за наличия смещений, вызванных влиянием множества различных технических факторов и эффектов, связанных с условиями распространения сигнала.

Положительный результат может быть получен при использовании вместо исходных результатов измерений ФН разностных измерений как результата линейных преобразований исходных измерений, в частности так называемых двойных разностей (ДР) ФН [1].

Двойные разности, вычисляемые по одновременным бортовым измерениям ФН НОКА и наземным измерениям ФН (от наземных измерительных станций), практически не имеют систематических погрешностей, обусловленных влиянием бортовой аппаратуры.

Суть предлагаемой в данной работе методики заключается в получении оценки аппаратной погрешности исходных измерений ФН косвенным образом — по оценке погрешностей ДР ФН. Если допустимо предположение, что исходные фазовые измерения равноточны, то случайные погрешности разностных измерений, как правило, представляют собой погрешности, характерные для стационарного процесса. Далее, если дисперсия погрешностей для ДР ФН определена, то дисперсия для любой частной составляющей ее измерений ФН может быть вычислена с учетом весовой доли, учитывающей использованные комбинации исходных измерений в виде коэффициента усиления соответствующего измерения в разностном измерении. В итоге если δ_r — оценка СКП для ДР ФН [1], то δ — оценка СКП составляющих ее измерений ФН — получается делением δ_r на коэффициент усиления γ .

Положим, что измеряемая функция u и n фиксированных значений этой функции x_1, x_2, \ldots, x_n на конечном интервале выборки связаны следующими функциональными соотношениями: $u = f(x_1, x_2, \ldots, x_n), u = u^* + \varepsilon_u, x_i = x_i^* + \varepsilon_i$, в которых u^*, x_i^* — истинные значения величин, $\varepsilon_u, \varepsilon_i$ случайные несмещенные ошибки.

С учетом принятых допущений

$$\varepsilon_u^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \varepsilon_i^2$$

и исходные фазовые измерения псевдодальности на i-й частоте имеют вид:

$$L_i = D + I_i + \sum_j \Delta D_j + \varepsilon_i,$$

где L_i — результат измерения ФН на *i*-й частоте; где D — истинная дальность между спутником и приемником; *I_i* — поправка, связанная с распространением сигнала в ионосфере Земли; $\sum_{j} \Delta D_{j}$ — сумма других, не рассматриваемых подробно в данном случае поправок; ε_i — случайные шумы сигнала на і-й частоте.

ставляет сумму систематических и медленно меняющихся погрешностей фазовых измерений, которые устраняются при формировании двойных разностей. Неустранимая часть этих погрешностей исключается при оптимальной аппроксимации результатов измерений так, что доминирующей ошибкой полиноминальной невязки остаются только аппаратные погрешности.

Ионосферно-свободная комбинация фазовых измерений на частотах f_1 и f_2 [1] имеет вид:

$$L_{\rm IF} = \frac{f_1^2}{f_1^2 - f_2^2} L_1 - \frac{f_2^2}{f_1^2 - f_2^2} L_2 = D + \sum_j \Delta D_j^* + \varepsilon_{\rm IF},$$

где величина $\varepsilon_{\mathrm{IF}}$ вычисляется по формуле:

$$\begin{split} \varepsilon_{\rm IF} &= \sqrt{\left(\frac{f_1^2}{f_1^2 - f_2^2}\right)^2 \varepsilon_1^2 + \left(\frac{f_2^2}{f_1^2 - f_2^2}\right)^2 \varepsilon_2^2} = \\ &= \frac{\sqrt{f_1^4 \varepsilon_1^2 + f_2^4 \varepsilon_2^2}}{f_1^2 - f_2^2}. \end{split}$$

С учетом того, что $\frac{f_1}{f_2} = \gamma$, получаем выражение:

$$\varepsilon_{\rm IF} = \frac{\sqrt{\gamma^4 \varepsilon_1^2 + \varepsilon_2^2}}{\gamma^2 - 1}.$$

Для геометрически свободной комбинации фазовых измерений на частотах f_1 и f_2 имеет место соотношение:

$$L_{
m GF}=L_1-L_2=I_{
m GF}+\lambda_1n_1-\lambda_2n_2+arepsilon_{
m GF},$$
где $arepsilon_{
m GF}=\sqrt{arepsilon_1^2+arepsilon_2^2}.$

Двойная разность ионосферно-свободных комбинаций фазовых измерений может быть представлена в виде:

$$\begin{split} L_{\rm IF} &= (\nabla \Delta L_{\rm IF11} - L_{\rm IF12}) - (L_{\rm IF21} - L_{\rm IF22}) = \\ &= (D_{11} - D_{12}) - (D_{21} - D_{22}) + \sum_j \Delta D_j^{**} + \varepsilon_{\nabla \Delta}, \end{split}$$

$$\varepsilon_{\nabla\Delta} = \sqrt{\varepsilon_{\mathrm{IF}}^2 + \varepsilon_{\mathrm{IF}}^2 + \varepsilon_{\mathrm{IF}}^2 + \varepsilon_{\mathrm{IF}}^2} = 2\varepsilon_{\mathrm{IF}} = 2\frac{\sqrt{\gamma^4\varepsilon_1^2 + \varepsilon_2^2}}{\gamma^2 - 1}.$$

Рассмотрим два случая:

1. Случайный шум фазовых измерений на ча-В выражении для L_i величина $\sum_j \Delta D_j$ пред- стотах f_1 и f_2 одинаков по величине, т.е. $\varepsilon_1 = \varepsilon_2$, тогда для $\varepsilon_{
abla\Delta}$ и $\varepsilon_{
m GF}$ получаем

$$\begin{split} \varepsilon_{\nabla\Delta} &= 2 \frac{\sqrt{\gamma^4+1}}{\gamma^2-1} \varepsilon_1, \\ \varepsilon_{\rm GF} &= \sqrt{2} \varepsilon_1. \end{split}$$

Учитывая, что для НКА ГЛОНАСС $\gamma = 9/7$ [1], получаем

$$\varepsilon_{\nabla\Delta} \simeq 5,917, \quad \varepsilon_{\rm GF} \simeq 1,414\varepsilon_1.$$

2. Случайный шум фазовых измерений прямо пропорционален длине волны сигнала $\varepsilon_i = \alpha \lambda_i$, т.е. $arepsilon_2/arepsilon_1=\gamma,$ тогда для $arepsilon_{
abla\Delta}$ и $arepsilon_{
m GF}$ получаем

$$\begin{split} \varepsilon_{\nabla\Delta} &= 2\gamma \frac{\sqrt{\gamma^2+1}}{\gamma^2-1} \varepsilon_1, \\ \varepsilon_{\rm GF} &= \sqrt{1+\gamma^2} \varepsilon_1. \end{split}$$

С учетом, что для НКА ГЛОНАСС $\gamma = 9/7$ [1], получаем

$$\varepsilon_{\nabla\Delta} \simeq 6.413 \varepsilon_1, \quad \varepsilon_{\rm GF} \simeq 1.629 \varepsilon_1.$$

Коэффициенты усиления случайного шума для различных комбинаций фазовых измерений представлены в табл. 1.

 Таблица 1. Коэффициенты усиления k_1 и k_2 случайного шума для различных комбинаций измерений ФН по отношению к шуму на частоте L1

	k_1 (при $\varepsilon_1 = \varepsilon_2$)	k_2 (при $\varepsilon_2/\varepsilon_1 = \gamma$)
ε_1	1	1
ε_2	1	1,286
$\varepsilon_{\mathrm{GF}}$	1,414	1,629
$\varepsilon_{\mathrm{IF}}$	2,958	3,206
$\nabla \Delta \varepsilon_{\rm IF}$	5,917	6,413

Из приведенных результатов следует, что оценка СКП измерений ФН может быть вычислена косвенным образом по оценке СКП для ДР измерений ФН $\nabla \Delta L_{\rm IF}$ и далее, с учетом табл. 1, использована для оценки СКП для исходных измерений ФН (как составляющей соответствующей разности) с учетом коэффициента усиления.

В частности, согласно табл. 1, оценка СКП случайной псевдошумовой погрешности исходных измерений ФН (как случайного стационарного процесса) приблизительно в 6 раз меньше СКП ДР ФН из ионосферно-свободных линейных комбинаций исходных измерений.

Далее, погрешности ДР ФН рассматриваются как вектор невязок, составляющими которого являются разности упомянутых ДР ФН и соответствующих им оптимальных полиномиальных представлений [2] как адекватного представления измеряемой функции. Предполагается, что результаты измерений и их двойные разности представлены группами — сеансами измерений. Под сеансом измерений понимается упорядоченная последовательность измерений на интервале времени длительностью Hs в количестве не менее 30 [2–4, 6], с приблизительно одинаковым 10-секундным (для АСН ГКА) шагом по времени.

Выбор оптимального порядка полинома (оптимального полинома) аппроксимации результатов измерений на интервале *Hs* может осуществляться по следующим критериям:

1. М — по контролю методической погрешности аппроксимации расчетных значений измерений, вычисленных по априорно известным координатным и скоростным параметрам движения (КСПД) НОКА. В общем случае КСПД вычисляются интегрированием системы дифференциальных уравнений движения КА при известной статистической оценке начальных условий (НУ) -КСПД на фиксированный (начальный) момент времени. Предполагается, что упомянутая статистическая оценка НУ вычисляется в наземном комплексе управления (НКУ) НОКА по траекторным измерениям по методу наименьших квадратов или является априорно известной. Оптимальным полиномом по этому критерию считается полином минимального порядка, при котором модуль методической невязки аппроксимации расчетных измерений не должен превышать заранее заданную контрольную величину M(dR).

2. C — по контролю скорости изменения СКП аппроксимации результатов измерений от порядка полинома. Оптимальный полином — это полином минимального *i*-го порядка, при котором различие процентного отношения модуля разности СКП для смежных *i*-го и (*i* + 1)-го полиномов по отношению к СКП *i*-го полинома не превышает заданного уровня C(dR).

Под полиномиальной невязкой понимается разность между исходным измерением и соответствующим ему расчетным значением, вычисленным с использованием оптимального полинома.

Многократное тестирование процедур определения оптимальных полиномов с использованием реальных измерений АСН ГКА показало высокий уровень совпадения оптимальных порядков полиномов по критериям M и C при M(dR) = 12-18 мм и C(dR) = 20% и равнозначность результатов, получаемых по этим критериям.

2. Оценка погрешностей фазовых измерений АСН

2.1. Условия и оценивание СКП измерений

В качестве примера использование предложенной методики оценки аппаратных погрешностей фазовых измерений (по ФН) было осуществлено применительно к ГНСС-измерениям АСН ГКА в апостериорном режиме на специализированном АРМ АО «Российские космические системы» с применением информационных файлов, содержащих результаты навигационных определений и навигационную (траекторную) информацию, в частности измерений ФН.

Для оценки аппаратных погрешностей фазовых измерений использовались среднее статистических оценок среднеквадратической погрешности измерений и разброс СКП по выборкам.

Расчет СКП осуществлялся по измерениям ФН АСН и от наземных измерительных станций IGS (в формате RINEX-файлов) по частным выборкам S1 и S2.

Вычисление искомых СКП измерений ФН как точечных оценок осуществлялось с учетом норма-

тивных документов [6] и рекомендаций, изложенных в [2,3,5].

По каждой выборке измерений вычислялись следующие параметры.

1. СКП каждого сеанса ДР ФН

$$\nabla \delta_j = \sqrt{\frac{\sum_{i=1}^n (r_i - r_p)^2}{n - N}}$$

где r_i и r_p — двойная разность из составляющих ее исходных одновременных измерений ФН и соответствующее этой разности расчетное значение, n — количество двойных разностей в сеансе, N — порядок оптимального полинома, $j = 1, 2, \ldots, k$ — порядковый номер сеанса вторых разностей, k — общее количество сеансов.

2. Среднее СКП по всем сеансам ДР ФН

$$\nabla m_s = \frac{\sum_{j=1}^k \nabla \delta_j}{k}.$$

3. Соответственно дисперсия и СКП для ∇m_s

$$D_s = \frac{\sum_{j=1}^k (\delta_j - \nabla m_s)^2}{k-1}$$
$$\nabla \delta_s = \sqrt{\nabla D_s}.$$

4. Доверительный интервал для ДР ФН

$$\nabla L = (\nabla a_1, \nabla a_2),$$

где $\nabla a_1 = \nabla m_s - t_\beta \nabla \delta_s$, $\nabla a_2 = \nabla m_s + t_\beta \nabla \delta_s$ определяют границы интервала ∇L , в котором с вероятностью p находится истинное значение для ∇m_s , равно с вероятностью $\beta = 1 - p$ — вне этого интервала; t_β определяет смещение границ интервала от его центра в единицах СКП для выбранного p (согласно распределению Стьюдента). Далее принято, что p = 0,9973, тогда $\beta = 1 - p = 0,0027$. При p = 0,9973 $t_\beta = 3$.

5. Оценка нахождения ∇m_s вне пределов доверительного интервала

$$\beta^* = \frac{k_n}{k},$$

где k_n — количество сеансов с m_s вне интервала доверия.

6. СКП измерений ФН с учетом коэффициента усиления:

$$\delta_{f_i} = \frac{\delta_s}{k_i}, \quad i = 1, 2.$$

2.2. Результаты оценки погрешностей фазовых измерений АСН

В табл. 2, 3 приведены результаты статистических оценок погрешностей измерений ФН, полученные с использованием ДР ФН АСН для базовой линии AJAC-GSC1 (AJAC — наземная измерительная станция IGS, GSC1 — АСН ГКА).

Для определения искомых статистических оценок использованы две группы из 35 и 36 сеансов ДР ФН в выборках S1, S2 соответственно (в каждом сеансе не менее 30 измерений). Обе группы сеансов представлены на рис. 1 и 2 в виде графиков невязок упомянутых ДР ФН от оптимального полиномиального представления (в мм).

В табл. 2 и 3 использованы следующие обозначения:

№ — относительный порядковый номер сеанса ДР ФН;

RXX — номер рабочей точки НКА ГЛОНАСС XX;

 k_1, k_2 — соответственно минимальное и максимальное значения коэффициента усиления (увеличения) СКП ДР ФН по отношению к СКП исходных измерений ФН, $k_1 = \nabla \Delta \varepsilon_{\text{IF}}$ (при $\varepsilon_1 = \varepsilon_2 =$ = 5,917), $k_2 = \nabla \Delta \varepsilon_{\text{IF}}$ (при $\gamma = \varepsilon_2/\varepsilon_1 = 6,413$);

 $\nabla L, \nabla L_i$ — соответственно доверительный интервал для ДР ФН и исходных измерений ФН при $t_{\beta} = 3$ (t_{β} определяет число соответствующих СКП, на которое следует уменьшить и увеличить ∇m_s), для того чтобы истинное значение ∇m_s находилось в интервале доверия с вероятностью $\beta = 0,9973$).

Статистические оценки результатов обработки сеансов ДР ФН выборки S1:

1. Среднее СКП по всем сеансам двойных разностей — $\nabla m_s = 8{,}56~{\rm MM}{.}$

2. СКП для ∇m_s (для среднего СКП всех сеансов) — $\nabla \delta_s = 1,88$ мм.

3. Доверительный интервал для двойных разностей — $\nabla L = 2,92, 14,20$ мм.

4. Доверительный интервал для исходных фазовых измерений псевдодальности (вычисляется по значению ∇L с учетом коэффициентов усиления):

$$abla L_i = 2,92/k_i, 14,20/k_i$$
 мм, $abla L_1 = 0,49, 2,40$ мм, $abla L_2 = 0,46, 2,21$ мм.

					$\delta_{\rm c} = C K \Pi (MM)$	$\nabla \delta_{1} = C K \Pi (MM)$
Nº		Ллительность	Количество	$ abla \delta$ — СКП (мм)	исходных	исходных
	HKAI-HKA2	сеанса, с	измерений	невязок ДР ФН	измерений ФН,	измерений ФН,
			в сеансе		$k_1 = 5,917$	$k_2 = 6,413$
1	R20-R21	379,999000	39	8,592000	1,452087	1,339779
2	R11-R22	360,000000	37	7,303000	1,234240	1,138781
3	R09-R16	869,999000	88	9,885000	1,670610	1,541400
4	R19-R10	709,999000	72	7,247000	1,224776	1,130048
5	R10-R01	710,001000	72	9,784000	1,653541	1,525651
6	R10-R20	580,001000	59	8,114000	1,371303	1,265242
7	R21-R22	380,000000	39	6,390000	1,079939	0,996414
8	R10-R11	459,999000	47	6,049000	1,022309	0,943240
9	R10-R20	380,000000	39	7,556000	1,276998	1,178232
10	R16-R10	420,000000	43	9,577000	1,618557	1,493373
11	R10-R20	379,999000	39	9,938000	1,679567	1,549665
12	R10-R20	420,000000	43	8,594000	1,452425	1,340090
13	R11-R21	330,000000	34	7,004000	1,183708	1,092157
14	R19-R09	870,000000	88	8,922000	1,507859	1,391237
15	R19-R09	579,999000	59	7,340000	1,240493	1,144550
16	R11-R21	320,001000	33	5,698000	0,962988	0,888508
17	R19-R10	289,999000	30	9,338000	1,578165	1,456105
18	R11-R22	459,999000	47	6,545000	1,106135	1,020583
19	R10-R20	320,000000	33	10,458000	1,767450	1,630750
20	R20-R21	789,998000	80	12,370000	2,090586	1,928894
21	R18-R19	489,998000	50	8,744000	1,477776	1,363480
22	R01-R11	899,999000	91	11,669000	1,972114	1,819585
23	R21-R22	589,999000	60	5,710000	0,965016	0,890379
24	R20-R11	519,999000	53	7,874000	1,330742	1,227818
25	R09-R10	459,999000	47	6,557000	1,108163	1,022454
26	R16-R20	330,000000	34	10,222000	1,727565	1,593950
27	R11-R21	379,999000	39	6,508000	1,099882	1,014814
28	R20-R11	320,000000	33	11,749000	1,985635	1,832060
29	R20-R01	580,001000	59	9,681000	1,636133	1,509590
30	R22-R05	470,001000	48	9,160000	1,548082	1,428349
31	R09-R21	519,999000	53	7,626000	1,288829	1,189147
32	R11-R21	380,001000	39	7,618000	1,287477	1,187900
33	R08-R10	579,999000	59	9,241000	1,561771	1,440979
34	R20-R11	380,000000	39	10,842000	1,832347	1,690628
35	R20-R11	300,000000	31	6,085000	1,028393	0,948854
36	R09-R08	580,000000	59	12,090000	2,043265	1,885233
37	Все сеансы	494,166306	50	8,557778	1,446303	1,334442

Таблица 2. Статистические оценки погрешностей измерений ФН АСН ГКА выборки S1

					δ_{k} — СКП (мм)	$\nabla \delta_{k_{a}} - \mathrm{CK}\Pi$ (MM)
.№	НКА1_НКА9	Длительность сеанса, с	Количество	$ abla \delta - { m CK}\Pi$ (мм)	исходных	исходных
0 12	IIIIAI IIIIA2		в сезнсе	невязок ДР ФН	измерений ФН,	измерений ФН,
					$k_1 = 5,917$	$k_2 = 6,413$
1	R09-R20	539,999000	55	12,544000	2,119993	1,956027
2	R01-R09	540,000000	55	8,341000	1,409667	1,300639
3	R21-R02	360,000000	37	13,431000	2,269900	2,094340
4	R09-R21	319,999000	33	5,312000	0,897752	0,828317
5	R11-R21	400,000000	41	4,703000	0,794828	0,733354
6	R07-R09	409,999000	42	9,624000	1,626500	1,500702
7	R20-R11	719,999000	73	8,027000	1,356600	1,251676
8	R10-R20	699,999000	71	6,963000	1,176779	1,085763
9	R09-R20	440,000000	45	8,115000	1,371472	1,265398
10	R11-R22	419,999000	43	7,549000	1,275815	1,177140
11	R08-R10	710,001000	72	7,339000	1,240324	1,144394
12	R10-R01	540,001000	55	7,865000	1,329221	1,226415
13	R20-R19	440,001000	45	6,473000	1,093967	1,009356
14	R11-R21	360,000000	37	9,088000	1,535913	1,417121
15	R19-R11	539,999000	55	7,619000	1,287646	1,188056
16	R11-R21	370,000000	38	6,008000	1,015379	0,936847
17	R19-R11	719,999000	73	13,280000	2,244381	2,070794
18	R08-R10	539,999000	55	13,180000	2,227480	2,055200
19	R11-R21	720,000000	73	12,872000	2,175427	2,007173
20	R10-R01	740,000000	75	7,925000	1,339361	1,235771
21	R21-R22	720,001000	73	11,145000	1,883556	1,737876
22	R21-R22	329,999000	34	6,997000	1,182525	1,091065
23	R20-R19	320,000000	33	9,477000	1,601656	1,477780
24	R10-R09	430,000000	44	10,201000	1,724016	1,590675
25	R20-R19	540,001000	55	14,275000	2,412540	2,225947
26	R01-R19	719,999000	73	16,344000	2,762211	2,548573
27	R10-R20	400,000000	41	7,487000	1,265337	1,167472
28	R20-R11	519,999000	53	7,937000	1,341389	1,237642
29	R20-R11	399,999000	41	8,999000	1,520872	1,403243
30	R21-R02	400,000000	41	7,357000	1,243367	1,147201
31	R10-R01	440,001000	45	12,836000	2,169343	2,001559
32	R21-R22	369,999000	38	5,281000	0,892513	0,823484
33	R10-R11	329,999000	34	6,044000	1,021464	0,942461
34	R09-R20	339,999000	35	10,275000	1,736522	1,602214
35	R10-R11	419,999000	43	8,348000	1,410850	1,301731
36	Все сеансы	491,713971	50	9,121743	1,541616	1,422383

Таблица 3. Статистические оценки погрешностей измерений ФН АСН ГКА выборки S2

5. β^* — оценка частоты нахождения ∇m_s (среднего СКП) за пределами доверительного интервала — $\beta^* = 0$.

6. Средние СКП исходных фазовых измерений псевдодальности (вычисляются по значению ∇m_s с учетом коэффициентов усиления k_1 , k_2) — $\nabla m_{sk_1} = 1,45$ мм, $\nabla m_{sk_2} = 1,33$ мм.

7. СКП для ∇m_{sk_i} фазовых измерений с учетом коэффициента усиления (вычисляются по значению $\nabla \delta_s$ с учетом коэффициентов усиления k_1, k_2) — $\delta_{sk_1} = 0.32$ мм, $\delta_{sk_2} = 0.29$ мм.

Статистические оценки результатов обработки сеансов ДР ФН выборки S2:

1. Среднее СКП по всем сеансам двойных разностей — $\nabla m_s = 9,12~{\rm Mm}.$

2. СКП для ∇m_s (для среднего СКП всех сеансов) — $\nabla \delta_s = 2{,}89$ мм.

3. Доверительный интервал для двойных разностей — $\nabla L=0,46,17,78$ мм.

4. Доверительный интервал для исходных фазовых измерений псевдодальности (вычисляется по значению ∇L с учетом коэффициентов усиления)

 $abla L_i = 0.46/k_i, 17,78/k_i$ мм, $abla L_1 = 0.08, 3,00$ мм, $abla L_2 = 0.07, 2,77$ мм.

5. β^* — оценка частота нахождения ∇m_s (среднего СКП) за пределами доверительного интервала — $\beta^* = 0$.

6. Средние СКП исходных фазовых измерений псевдодальности (вычисляются по значению ∇m_s с учетом коэффициентов усиления $k_1,\ k_2)-\nabla m_{sk_1}=1,54$ мм, $\nabla m_{sk_2}=1,42$ мм.

7. СКП для ∇m_{sk_i} фазовых измерений с учетом коэффициента усиления (вычисляются по значению $\nabla \delta_s$ с учетом коэффициентов усиления k_1, k_2) — $\delta_{sk_1} = 0.49$ мм, $\delta_{sk_2} = 0.45$ мм.

В соответствии с предложенной методикой осуществлена оценка точностных характеристик измерений псевдодальностей по фазе несущей, получаемых АСН ГКА. Результаты оценок рассчитаны по двум выборкам измерений, содержащих соответственно 36 (выборка S1) и 35 (выборка S2) сеансов двойных разностей при не менее 30 измерений в каждом сеансе. Итоговые результаты упомянутых оценок представлены в табл. 4.

Таблица 4. Оценки точностных характеристик измерений ФН

Выборка	$\max \nabla m_{sk_i}$, мм	$\nabla L_{\rm J}$, мм	∇L_{fi} , мм	β^*
S1	1,45	0,46	2,40	0
S2	1,54	0,07	3,00	0

Здесь использованы следующие обозначения:

 $\max \nabla m_{sk_i}$ — максимальное среднее значение СКП исходных измерений ФН для группы при коэффициентах усиления k_i , i = 1, 2;

 ∇L — доверительный интервал среднего статистической оценки СКП;

p — вероятность нахождения среднего оценки СКП в ∇L ;

 β^* — оценка вероятности нахождения ∇m_s вне $\nabla L;$

 $abla L_{\pi}$ — левая граница доверительного интервала ∇L (минимальная граница ∇L при коэффициентах усиления k_i , i = 1, 2 с вероятностью доверия p = 0,9973);

 $abla L_{\rm n}$ — правая граница доверительного интервала abla L (максимальная граница abla L при коэффициентах усиления k_i , i = 1, 2 с вероятностью доверия p = 0.9973, равно «недоверия» — $\beta = 1 - 0.9973 = 0.0027$).

Полученные статистические характеристики в табл. 2–4 и графики на рис. 1–2 являются репрезентативными оценками аппаратных погрешностей измерений по ФН для выбранного КА.

Заключение

1. Предложена методика оценки аппаратной погрешности навигационных измерений ФН, получаемых в двухчастотном режиме бортовыми навигационными системами НОКА.

2. Получены выборочные оценки аппаратных погрешностей навигационных измерений ФН, полученных АСН ГКА. В частности, установлено, что с вероятностью p = 0,9973 среднее значение СКП измерений ФН при использовании НКА

ГЛОНАСС находится в пределах 2–3 мм, что согласуется с СКП для других аналогичных аппаратов.

3. Предложенная методика и технология оценки аппаратных погрешностей результатов измерений ФН, полученных в двухчастотном режиме АСН НО ГКА, могут быть использованы как типовые для мониторинга точности ГНСС-измерений широкого класса российских и зарубежных НОКА.

4. Визуальный анализ невязок ДР ФН, представленных на рис. 1 и рис. 2, позволяет сделать предположение о наличии в них слабого тренда, появление которого предположительно может быть обусловлено влиянием среды распространения радиосигналов. Окончательное заключение может быть получено по результатам обработки измерений на длительных интервалах времени и является предметом дальнейших исследований.

Список литературы

- 1. Антонович К.М. Использование спутниковых радионавигационных систем в геодезии. М.: ΦГУП «Картгеоцентр», 2005. 334 с.
- 2. Андерсон Т. Статистический анализ временных рядов. М.: Мир, 1976. 774 с.
- 3. Вентцель Е.С. Теория вероятностей. М.: Наука, 1968. 576 с.
- Жданюк Б.Ф. Основы статистической обработки траекторных измерений. М.: Сов. радио, 1978. 384 с.
- 5. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.: Наука, 1986.
- 6. ГОСТ Р 50779.21-2004. Статистические методы. Правила определения и методы расчета статистических характеристик по выборочным данным. Часть 1. Нормальное распределение.