РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ 2015, том 2, выпуск 3, с. 12-22

АЭРОКОСМИЧЕСКИЕ МЕТОДЫ ЗОНДИРОВАНИЯ ЗЕМЛИ, ПЛАНЕТ И ДРУГИХ КОСМИЧЕСКИХ ОБЪЕКТОВ. ГЕОЭКОЛОГИЯ И КОСМИЧЕСКИЕ СИСТЕМЫ ПОИСКА И СПАСАНИЯ

УДК 621.396

Дистанционное зондирование Земли с адаптивной компенсацией случайных наклонов волнового фронта

К. Н. Свиридов

д. т. н., проф., AO «Российские космические системы» e-mail: sviridovkn@yandex.ru

Аннотация. Рассмотрены особенности наблюдения Земли из космоса через турбулентную атмосферу. Предложена преддетекторная адаптивная компенсация случайных наклонов волнового фронта, обусловленных турбулентностью атмосферы. Исследована оптическая передаточная функция (ОПФ) и разрешающая способность системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта. Для телескопа с кольцевой апертурой исследована зависимость ОПФ от степени экранирования кольцевой апертуры и показаны преимущества системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта перед системой без адаптации.

Ключевые слова: турбулентная атмосфера, кольцевая апертура, адаптивная компенсация атмосферных искажений, аппаратурное достижение высокого разрешения

Earth Remote Sensing with Adaptive Compensation a Casual Tiltes of Wave Front

K. N. Sviridov

doctor of engineering science, professor, Joint Stock Company "Russian Space Systems" e-mail: sviridovkn@yandex.ru

Abstract. Particularities of observation Earth from the Space are considered. Predetection adaptive compensation a casual tiltes of wave front, generated by atmospheric turbulence, is proposed. Optical Transfer Function (OTF) and resolution ability of ERS system with adaptive compensation a casual tiltes of wave front is investigated. For telescope with annular aperture a dependence OTF from degree screening of annular aperture is investigated and preferences of ERS system with adaptive compensation a casual titles of wave front before system without adaptation are shown.

Key words: turbulent atmosphere, annular aperture, adaptive compensation of atmospheric distortions, apparatus for reaching high resolution

Введение

Наличие турбулентной атмосферы между космическим аппаратом ДЗЗ и земной поверхностью ограничивает информационные возможности системы ДЗЗ по разрешению. Типично задачи ДЗЗ решаются в ближней зоне (зоне Френеля) $D^2 > \overline{\lambda}H$, где D — внешний диаметр апертуры телескопа ДЗЗ, $\overline{\lambda}$ — средняя длина волны солнечного излучения подсвета ($\overline{\lambda}=0.5$ мкм) и H- высота космического аппарата ДЗЗ над земной поверхностью. От каждой точки земной поверхности в направлении КА ДЗЗ распространяется расходящаяся сферическая волна. При этом искажения волнового фронта, приобретенные ею в пределах турбулентного слоя (нижние $L=10\,$ км атмосферы у земной поверхности), по мере ее распространения до высоты H KA ДЗЗ существенно увеличиваются (рис. 1).

В результате величина пространственного радиуса корреляции атмосферных флуктуаций $r_0(\overline{\lambda},H)$ (так называемый параметр Фрида) на высоте H КА ДЗЗ определяется соотношением [1]

$$r_0(\overline{\lambda}, H) \approx \frac{H}{L} r_0(\overline{\lambda}, L),$$
 (1)

где $r_0(\overline{\lambda},L)=0.1$ м — величина пространственного радиуса корреляции атмосферных флуктуаций волнового фронта на границе турбулентного слоя.

Отсюда нетрудно видеть, что при высоте КА ДЗЗ H = 350 км величина $r_0(\overline{\lambda}, H)$ оказывается равной 3,5 м, при H=500 км $r_0(\overline{\lambda},H)=$ = 5 м, а при H = 750 км величина $r_0(\overline{\lambda}, H)$ оказывается равной 7,5 м. Этот результат, полученный нами ранее [1], свидетельствует о том, что величина $r_0(\overline{\lambda}, H)$ оказывается существенно большей диаметра D = 1,1 м зеркальной оптики существующих телескопов ДЗЗ [2] и, в соответствии с условием оптимизации [1] $D \geqslant 2r_0$, требует увеличения диаметра апертуры телескопа ДЗЗ до величин D = 7-15 м. Достижение космических апертур таких размеров возможно в перспективе на базе апертурного синтеза и, в соответствии с проведенными исследованиями [3], может обеспечить достижение предельного разрешения систем ДЗЗ, равного 4,6 см. Сегодня этот подход является технически трудно реализуемым на современном уровне развития технологий оптического приборостроения. В существующих условиях, когда $r_0(\overline{\lambda},H) > D$, нами предложен другой подход, а именно адаптивная компенсация случайных наклонов волнового фронта [4]. Действительно, реально атмосферные искажения волнового фронта на приемной апертуре телескопа ДЗЗ представляют собой случайные наклоны волнового фронта, приводящие к случайным сдвигам мгновенных коротко-экспозиционных изображений при их длинно-экспозиционной регистрации за время $au_{\mathfrak{B}}$, большее интервала временной корреляции атмосферных флуктуаций au_{A} (так называемого времени «замороженности» турбулентности атмосферы). Исследуем предложенную [4] систему ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта.

Оптическая передаточная функция (ОПФ) системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта

Наличие турбулентной атмосферы Земли ограничивает проницающую и разрешающую способность систем ДЗЗ. Для увеличения проницающей способности и расширения поля зрения системы ДЗЗ осуществляют длинно-экспозиционную регистрацию изображений ДЗЗ. Это приводит к усреднению атмосферных искажений волнового фронта светового излучения от объекта — участка земной поверхности, что существенно ухудшает разрешающую способность системы ДЗЗ и не позволяет различать на земной поверхности детали малых размеров.

Разрешающую способность системы атмосфера-телескоп можно существенно повысить, если в процессе длинно-экспозиционной регистрации изображений ДЗЗ компенсировать за время, меньшее интервала временной корреляции атмосферных флуктуаций $\tau_{\rm A}$, случайные наклоны волнового фронта светового излучения от объекта, приводящие к случайным сдвигам (дрожанию) регистрируемого изображения.

В настоящее время такие адаптивные системы, устраняющие атмосферное дрожание изображений

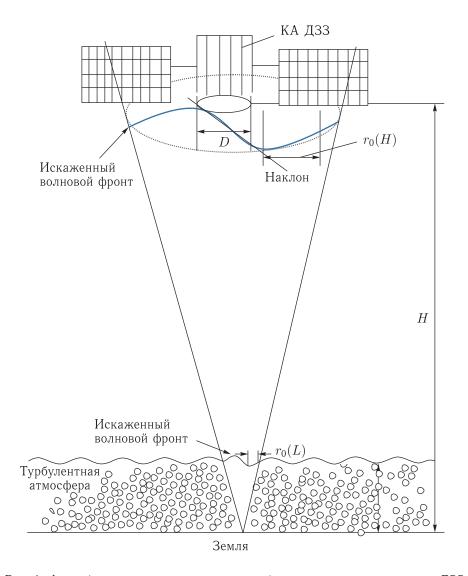


Рис. 1. Атмосферные искажения волнового фронта светового излучения ДЗЗ

в процессе их накопления компенсацией случайных наклонов волнового фронта, разрабатываются для ряда наземных астрономических обсерваторий [5,6]. В связи с этим, а также учитывая принцип взаимности распространения [7], представляет интерес исследование оптических свойств системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта.

Наиболее полной характеристикой систем, формирующих изображение, является их оптическая передаточная функция (ОП Φ).

Мгновенная (коротко-экспозиционная) ОПФ системы атмосфера-телескоп с компенсацией атмосферных наклонов волнового фронта определя-

ется [1,8] как

$$\tau(\mathbf{f}) = c \int d\mathbf{r} W(\mathbf{r}) W(\mathbf{r} - \overline{\lambda} F \mathbf{f}) \times \times \exp\{ [\chi(\mathbf{r}) + \chi(\mathbf{r} - \overline{\lambda} F \mathbf{f})] + i [(\theta(\mathbf{r}) - \mathbf{ar}) - (\theta(\mathbf{r} - \overline{\lambda} F \mathbf{f}) - \mathbf{a}(\mathbf{r} - \overline{\lambda} F \mathbf{f}))] \}, \quad (2)$$

где ${\bf r}$ — координаты в плоскости апертуры телескопа ДЗЗ, ${\bf f}=({\bf r}_1-{\bf r}_2)/\overline{\lambda}F$ — пространственночастотный вектор, $W({\bf r})$ — безаберрационная апертурная функция, равная единице в пределах апертуры и нулю вне ее, F — фокусное расстояние телескопа, $\overline{\lambda}$ — средняя длина волны солнечного излучения, $\theta({\bf r})$ — случайное фазовое искажение,

а $\chi(\mathbf{r})$ — случайное изменение логарифма амплитуды в точке \mathbf{r} , причем $\theta(\mathbf{r})$ и $\chi(\mathbf{r})$ выбираются так, что они равны нулю, если нет искажений, c — нормирующий множитель, выбираемый так, чтобы $\tau(0)=1$, и \mathbf{a} — обусловленный атмосферными фазовыми флуктуациями случайный вектор наклона волнового фронта, определяющий сдвиг изображения.

Средняя по ансамблю ОПФ $\langle au(\mathbf{f}) \rangle$ имеет вид

$$\langle \tau(\mathbf{f}) \rangle = c \int d\mathbf{r} W(\mathbf{r}) W(\mathbf{r} - \overline{\lambda} F \mathbf{f})] \times$$

$$\times \langle \exp\{ [\chi(\mathbf{r}) + \chi(\mathbf{r} - \overline{\lambda} F \mathbf{f})] + i [(\theta(\mathbf{r}) - \mathbf{ar}) - (\theta(\mathbf{r} - \overline{\lambda} F \mathbf{f}) - \mathbf{a}(\mathbf{r} - \overline{\lambda} F \mathbf{f}))] \} \rangle.$$
(3)

Усреднение экспоненты в (3) проведено с учетом трех предположений Фрида [9]:

- (I) распределение ${\bf a}$, подобно распределению θ и χ , гауссово;
- (II) распределение $[\theta(\mathbf{r}) \mathbf{ar}]$ не зависит от распределения \mathbf{a} ;
- (III) распределение $[\theta(\mathbf{r}) \mathbf{ar}] [\theta(\mathbf{r} \overline{\lambda}F\mathbf{f}) \mathbf{a}(\mathbf{r} \overline{\lambda}F\mathbf{f})]$ не зависит от распределения $[\chi(\mathbf{r}) + \chi(\mathbf{r} \overline{\lambda}F\mathbf{f})]$, и в результате усреднения получено

$$\langle \exp\{\left[\chi(\mathbf{r}) + \chi(\mathbf{r} - \overline{\lambda}F\mathbf{f})\right] + i\left[(\theta(\mathbf{r}) - \mathbf{a}\mathbf{r}) - (\theta(\mathbf{r} - \overline{\lambda}F\mathbf{f}) - \mathbf{a}(\mathbf{r} - \overline{\lambda}F\mathbf{f})\right]\}\rangle =$$

$$= \exp\left\{-\frac{1}{2}D_{\chi}(\overline{\lambda}Ff) - D_{\theta}(\overline{\lambda}Ff) + \frac{1}{2}\langle(\mathbf{a}\overline{\lambda}F\mathbf{f})^{2}\rangle\right\},$$
(4)

где $D_{\theta}(r) = \langle [\theta(\mathbf{r}_1) - \theta(\mathbf{r}_1 + \mathbf{r})]^2 \rangle$ — структурная функция флуктуаций фазы, а $D_{\chi}(r) = \langle [\chi(\mathbf{r}_1) - \chi(\mathbf{r}_1 + \mathbf{r})]^2 \rangle$ — структурная функция флуктуаций логарифма амплитуды (уровня).

Тогда средняя ОПФ $\langle \tau \left(\mathbf{f} \right) \rangle$ преобразуется к виду

$$\langle \tau(\mathbf{f}) \rangle = \tau_0(\mathbf{f}) \exp \left\{ -\frac{1}{2} [D(\overline{\lambda}Ff) - \langle (\mathbf{a}\overline{\lambda}F\mathbf{f})^2 \rangle] \right\},$$
(5)

где $D(r)=D_{\chi}(r)+D_{\theta}(\mathbf{r})$ — волновая структурная функция, $\tau_0(\mathbf{f})=\mathrm{c}\int W(\mathbf{r})W(\mathbf{r}-\overline{\lambda}F\mathbf{f})\,d\mathbf{r}$ — ОПФ идеального телескопа.

Определим величину наклона волнового фронта, обусловленного турбулентностью атмосферы.

Оценка случайных наклонов волнового фронта

В оптической астрономии, как и в наземных системах контроля космического пространства, определение случайного наклона волнового фронта возможно двумя путями. Во-первых, величина корректируемого наклона может быть оценена непосредственно по самому измеренному волновому фронту, и, во-вторых, эта оценка может быть определена по величине смещения координат центра тяжести формируемого телескопом коротко-экспозиционного изображения объекта.

В задачах дистанционного зондирования Земли реализация второго пути достаточно сложна, в связи с чем рассмотрим и исследуем адаптивную оптическую систему, реализующую первый из указанных путей.

Фрид [9] предложил определять ${\bf a}$ по $\theta({\bf r})$ путем минимизации по апертуре квадрата отклонения ${\bf ar}$ от $\theta({\bf r})$, то есть из условия

$$\int d\mathbf{r}W(\mathbf{r})[\theta(\mathbf{r}) - \mathbf{a}\mathbf{r})]^2 = \min.$$
 (6)

Следуя Фриду [9], при усреднении в (5) получаем следующее выражение

$$\langle (\mathbf{a}\overline{\lambda}F\mathbf{f})^{2}\rangle =$$

$$= (\overline{\lambda}Ff_{1})^{2}\langle a_{1}^{2}\rangle + (\overline{\lambda}Ff_{2})^{2}\langle a_{2}^{2}\rangle + 2(\lambda F)^{2}f_{1}f_{2}\langle a_{1}a_{2}\rangle,$$
(7)

где компоненты наклона определяются

$$a_{1} = \frac{\int d\mathbf{r}W(\mathbf{r}) \,\theta(\mathbf{r})r_{1}}{\int d\mathbf{r}W(\mathbf{r}) \,r_{1}^{2}},$$

$$a_{2} = \frac{\int d\mathbf{r}W(\mathbf{r}) \,\theta(\mathbf{r})r_{2}}{\int d\mathbf{r}W(\mathbf{r}) \,r_{2}^{2}}.$$
(8)

Очевидно, что наклон ${f a}$ определяется по $heta({f r})$ однозначно.

Чтобы установить конкретный вид ОПФ (5), необходимо конкретизировать зависимость D(r). Часто используют аппроксимацию [9]

$$D(r) = 6.88(r/r_0)^{5/3}, (9)$$

где r_0 — пространственный радиус корреляции атмосферных флуктуаций светового излучения (1).

Таким образом, мы полностью определили выражение (5) для ОПФ $\langle \tau(\mathbf{f}) \rangle$ и можем перейти к ее анализу.

Анализ ОПФ системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта

Исследуем среднюю ОПФ системы атмосферателескоп с адаптивной компенсацией случайных наклонов волнового фронта для различных соотношений пространственного радиуса корреляции атмосферных флуктуаций — r_0 , внешнего диаметра приемной апертуры телескопа — D и степени ее экранирования — ξ .

Рассмотрим зеркальный телескоп-рефлектор с кольцевой апертурой, у которого внешний диаметр равен D, а внутренний — ξD . Его ОПФ для нормированной пространственной частоты $x=\frac{\lambda Ff}{D}$ определяется выражением [10]

$$\tau_{\xi}(\mathbf{x}) = \frac{1}{1 - \xi^2} \left[G_1(x) + \xi^2 G_1 \left(\frac{x}{\xi} \right) + G_2(x) \right], (10)$$

тдс

$$\begin{split} G_1(x) &= \\ &= \begin{cases} \frac{2}{\pi} \left[\arccos x - x(1-x^2)^{\frac{1}{2}} \right], & \text{при } 0 \leqslant x \leqslant 1 \\ 0, & \text{при } 1 < x \end{cases} \end{cases},$$

$$G_2(x) =$$

$$= \begin{cases} -2\xi^2, & \text{при } 0 < x < \frac{1-\xi}{2} \\ \frac{2\xi}{\pi} \sin \phi + \left(\frac{1+\xi}{\pi}\right) 2\phi - \frac{2(1-\xi^2)}{\pi} \times \\ \times \arctan\left[\frac{1+\xi}{1-\xi} \operatorname{tg} \frac{\phi}{2}\right], & \text{при } \frac{1-\xi}{2} \leqslant x \leqslant \frac{1+\xi}{2}, \\ 0, & \text{при } \frac{1+\xi}{2} < x \end{cases} \end{cases},$$

a
$$\phi = \arccos \frac{1 + \xi^2 - 4x^2}{2\xi}$$
.

На рис. 2 изображены графики $\tau_{\xi}(x)$ для $\xi=0,0;0,3;0,5;0,7;0,9$. Возрастание $\tau_{\xi}(x)$ для высоких частот x при увеличении ξ можно легко объяснить.

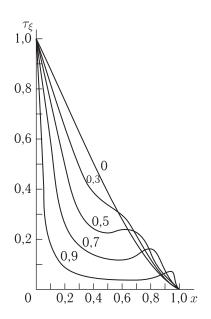
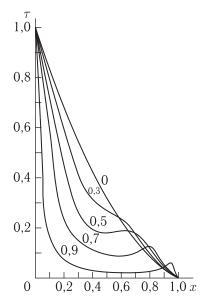
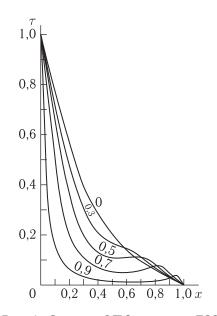


Рис. 2. ОПФ кольцевой апертуры телескопа ДЗЗ для различной степени ее экранирования $\xi=0,0;0,3;0,5;0,7;0,9$


Величина полученного с помощью оптической системы сигнала на частоте x равна площади пересечения апертуры системы с такой же апертурой, смещенной относительно первой на величину xD.


В силу этого, блокируя для кольцевой апертуры центральную часть ξD , мы не уменьшаем сигнал на частотах, превышающих $x=\frac{1+\xi}{2}$. В то же время полученная суммарная энергия (сигнал на нулевой частоте) уменьшается на множитель $[1-\xi^2]$. Поскольку ОПФ нормируется так, что она равна 1 на нулевой частоте, то $\tau_\xi(x)$ соответственно выше на множитель $[1-\xi^2]^{-1}$ на частотах, превышающих $\frac{1+\xi}{2}$.

Таким образом, для больших ξ и, соответственно, больших x увеличение может быть существенным.

Средняя коротко-экспозиционная ОП Φ системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта в соответствии с (5) определяется выражением

$$\langle \tau(x) \rangle = \tau_{\xi}(x) \times \left\{ -3.44 \left(\frac{D}{r_0} \right)^{5/3} x^{5/3} [1 - x^{1/3} \frac{2^{10/3}}{\pi} E(\xi)] \right\},$$
(11)

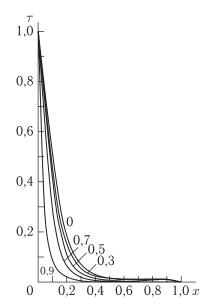


Рис. 3. Средняя ОПФ системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта для $D/r_0=1$

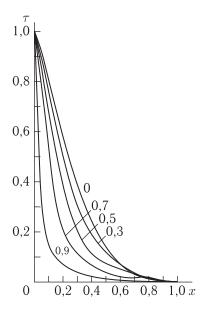
Рис. 4. Средняя ОПФ системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта для $D/r_0=2$

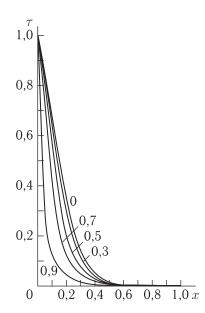
Рис. 5. Средняя ОПФ системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта для $D/r_0=5$

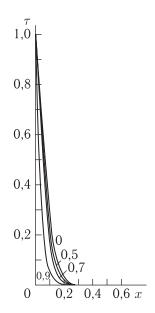
где

$$E(\xi)] = -\frac{1}{(1 - \xi^4)^2} \int_{\xi}^{1} \times du \int_{\xi}^{1} du \int_{0}^{2\pi} dz u^2 u^{|2} \cos z [u^2 + u^{|2} - 2uu^{|} \cos z]^{5/6}.$$
(12)

Прежде чем перейти к анализу поведения функции $\langle \tau(x) \rangle$ (11), сделаем одно замечание. Величина $(2^{10/3}/\pi)E(0)\approx 1,043$. Поэтому при $x\to 1$ показатель экспоненты в (11) станет больше нуля, что практически абсурдно. Такой результат обусловлен приближенностью предположения (II), сделанного при выводе (11). Для устранения этой нефизичности можно заменить 1,043 на 1 [9], оставаясь в тех же пределах точности. В соответствии с таким подходом получаем для $\langle \tau(x) \rangle$ следующее выражение:


$$\langle \tau(x) \rangle = \tau_{\xi}(x) \times \times \exp \left\{ -3.44 \left(\frac{D}{r_0} \right)^{5/3} x^{5/3} [1 - x^{1/3} S(\xi)] \right\},$$
 (13)


где $S(\xi) = E(\xi)/E(0)$. Значения функции $S(\xi)$] приведены в таблице.


Таблица

ξ	$S(\xi)$	ξ	$S(\xi)$	ξ	$S(\xi)$
0,00	1,00000	0,35	0,99748	0,70	0,97404
0,05	0,99998	0,40	0,99591	0,75	0,96832
0,10	0,99997	0,45	0,99379	0,80	0,96211
0,15	0,99990	0,50	0,99109	0,85	0,95544
0,20	0,99996	0,55	0,98776	0,90	0,94840
0,25	0,99929	0,60	0,98379	0,95	0,94100
0,30	0,99858	0,65	0,97921	0,33	0,34100

Из таблицы видно, что при увеличении ξ значения $S(\xi)$ все более отклоняется от 1. Хотя это отклонение на первый взгляд кажется не очень значительным, оно приводит к тому, что высокие пространственные частоты для кольцевой апертуры с компенсацией случайных наклонов волнового фронта теперь также будут подавляться, хотя и менее значительно, чем при длинно-экспозиционной регистрации без адаптивной компенсации наклонов. Это подавление тем заметнее, чем больше ξ и чем больше отношение D/r_0 . Сказанное иллюстрируется рис. 3, 4, 5, на которых изображена $\langle \tau(x) \rangle$ соответственно для $D/r_0=1,2$ и 5.

без адаптивной компенсации случайных наклонов волнового фронта для $D/r_0 = 1$

чайных наклонов волнового фронта чайных наклонов волнового фронта для $D/r_0 = 2$

Рис. 6. Средняя ОПФ системы ДЗЗ Рис. 7. Средняя ОПФ системы ДЗЗ Рис. 8. Средняя ОПФ системы ДЗЗ без адаптивной компенсации слу- без адаптивной компенсации слудля $D/r_0 = 5$

Аналогичные средние ОПФ для системы ДЗЗ без компенсации наклонов приведены на рис. 6, 7 и 8 (для $D/r_0=1,2$ и 5 соответственно). Различие значительное.

Обычно считают, что при $D/r_0 \leqslant 1$ влиянием атмосферы на качество оптической системы атмосфера-телескоп можно пренебречь. Из сравнения рис. 3 и рис. 6 с рис. 2 видно, что это справедливо лишь для оптических систем с адаптивной компенсацией случайных наклонов волнового фронта, в то время как для систем без компенсации наклонов при $D/r_0 = 1$ влияние атмосферы довольно существенно.

Анализ разрешающей способности системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта

Качество оптической системы традиционно оценивается ее разрешающей способностью. Существует довольно много подходов к ее определению. Мы, следуя Фриду [9], примем в качестве меры разрешающей способности системы атмосферателескоп величину

$$R = \int \langle \tau(\mathbf{f}) \rangle \, d\mathbf{f}. \tag{14}$$

Кратко остановимся на ее характеристике. По своей сути эта величина определяет корреляционное качество системы и является мерой непосредственного сходства между наблюдаемым участком земной поверхности и его формируемым на борту КА изображением. В соответствии с проведенными выше исследованиями для оптической системы ДЗЗ без компенсации наклонов волнового фронта и системы ДЗЗ с адаптивной компенсацией наклонов волнового фронта мы имеем соответсвенно величины $R_{
m 6.K}$ и $R_{
m c.K}$, определяемые соотноше-

$$R_{\text{6.K}} = 2\pi \frac{D^2}{(\overline{\lambda}F)^2} \int_0^1 x \tau_{\xi}(x) \exp\left\{-3.44 \left(\frac{D}{r_0}\right)^{5/3} x^{5/3}\right\} dx,$$
(15)

$$R_{\text{c.k}} = 2\pi \frac{D^2}{(\overline{\lambda}F)^2} \times \left\{ -3.44 \left(\frac{D}{r_0} \right)^{5/3} x^{5/3} [1 - x^{\frac{1}{3}} S(\xi)] \right\} dx.$$
(16)

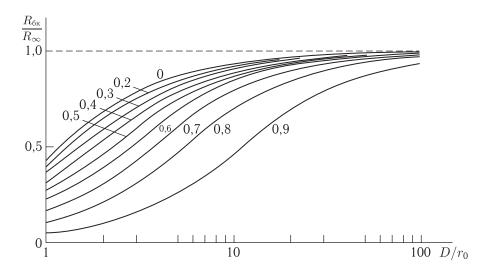


Рис. 9. Зависимость нормированного разрешения от нормированного диаметра в системах ДЗЗ без адаптивной компенсации случайных наклонов волнового фронта

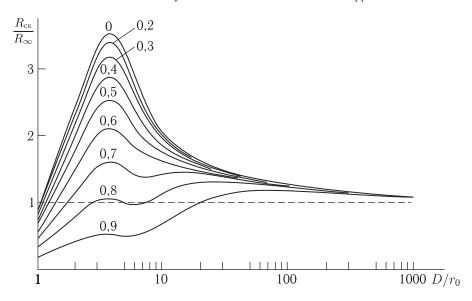


Рис. 10. Зависимость нормированного разрешения от нормированного диаметра в системах ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта

Устремив D к бесконечности с учетом соотношения $3{,}44 \approx \left[\frac{24}{5}\Gamma\left(\frac{6}{5}\right)\right]$, легко установить, что существует предел разрешения R_{∞} , определяемый выражением

$$R_{\infty} = \lim_{D \to \infty} R_{6.K} = \lim_{D \to \infty} R_{c.K} = \frac{\pi}{4} \left(\frac{r_0}{\overline{\lambda} F} \right)^2. \quad (17)$$

Отсюда видно, что в случае бесконечно большой апертуры атмосферой устанавливается один и тот же предел разрешения как для систем без

коррекции случайных наклонов волнового фронта, так и для систем с их адаптивной компенсацией. Но приближение к этому пределу в указанных системах происходит существенно различным образом, о чем свидетельствуют рис. 9 и рис. 10, где представлены, соответственно, зависимости нормированного разрешения от нормированного диаметра: $R_{6.\mathrm{K}}(D/r_0)/R_{\infty}$ и $R_{\mathrm{C.K}}(D/r_0)/R_{\infty}$.

На основании полученных зависимостей видно, что если в системах без компенсации наклонов волнового фронта мы имеем простое монотонное стремление $R_{\rm б.K}/R_{\infty} \to 1$, то в системах с компенсацией наклонов волнового фронта имеются максимумы разрешения, то есть существует некоторое оптимальное значение D/r_0 , при котором достигается довольно существенное увеличение разрешения по сравнению с системами без адаптивной компенсации наклонов. Для круглой апертуры этот результат впервые был получен Фридом [9]. Интересно отметить, что для кольцевых апертур с большими значениями ξ появляется второй максимум разрешения, который может существенно превышать по своему значению первый, достигаемый, как и для круглой апертуры, при $D/r_0 \approx 3.5$. На рис. 11 показано уменьшение значения абсолютного максимума разрешения телескопа с кольцевой апертурой и компенсацией наклонов волнового фронта при увеличении ξ . Излом на рис. 11 при $\xi \approx 0.7$ объясняется тем, что значение второго максимума начинает превышать значение первого.

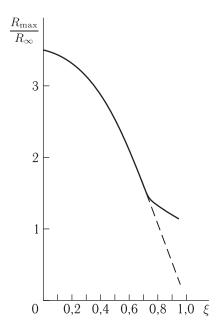
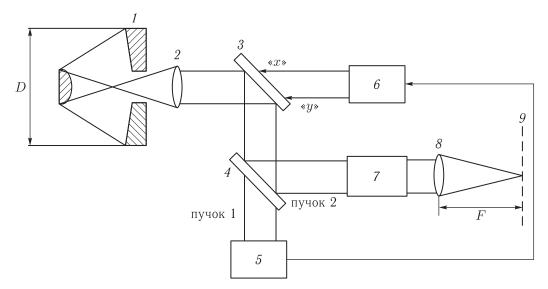


Рис. 11. Зависимость абсолютного максимума разрешения телескопа ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта от степени экранирования кольцевой апертуры телескопа

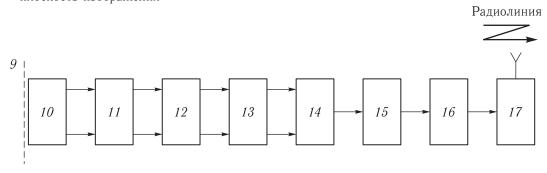
Заметим, что кривая, изображенная на рис. 11, практически совпадает с кривой $\mathrm{const}[1-\xi^2]$, то есть вплоть до $D/r_0=3.5$ для систем с компенсацией наклонов волнового фронта атмосфера практически одинаково влияет на разрешение те-

лескопа с кольцевой апертурой произвольной величины экранирования ξ , что объясняется малым отклонением $S(\xi)$ от 1 даже для больших ξ (см. таблицу).

Практически важным является вопрос о максимально допустимом значении ξ , при котором ухудшение характеристик системы с адаптивной компенсацией наклонов волнового фронта при кольцевой апертуре еще не очень существенно по сравнению с круглой апертурой. При решении этого вопроса берем за основу критерий Штреля, в соответствии с которым допустимым считается уменьшение разрешения $R_{\rm c, k}$ на $20\,\%$ от максимального значения. Максимальное различие в разрешении достигается при $D/r_0 = 3.5$ (рис. 10), поэтому из анализа рис. 11 получаем, что максимально допустимое значение ξ равно 0,43, а достигаемое при этом разрешение по сравнению с системой без компенсации наклонов увеличивается \sim в 4 раза, как и для круглой апертуры.

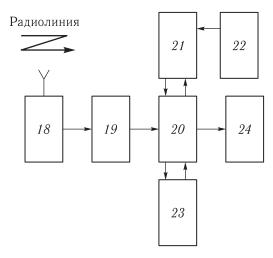

Пример аппаратурной реализации предложенной нами системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта дан на рис. 12, a-s.

Здесь канал формирования изображений ДЗЗ и канал детектирования и регистрации изображений ДЗЗ находятся на борту космического аппарата ДЗЗ, а канал обработки изображений ДЗЗ находится на Земле и связан с ними по радиолинии.


Выводы

В результате проведенного анализа характеристик системы ДЗЗ с адаптивной компенсацией случайных наклонов волнового фронта для телескопа с кольцевой апертуры можно сделать следующие выводы:

- 1) высокочастотный выигрыш кольцевой апертуры по сравнению с круглой сохраняется при $D/r_0 \leqslant 4$, характерных для задач ДЗЗ, а при $D/r_0 > 4$, характерных для наземных наблюдений космоса, круглая апертура лучше кольцевой для всех пространственных частот;
- 2) максимально допустимая степень экранирования кольцевой апертуры ξ составляет 0,43;



- а. Структурная схема канала адаптивного формирования изображений ДЗЗ:
- 1 зеркальный телескоп космического аппарата ДЗЗ;
- 2- коллимирующая оптика;
- 3 плоское адаптивное качающееся зеркало-компенсатор случайных наклонов волнового фронта;
- 4 полупрозрачное светоделительное зеркало;
- 5 детектор волнового фронта и оценки случайных наклонов сдвиговый интерферометр;
- 6 блок адаптивного управления качающимся зеркалом;
- 7 светофильтры;
- 8 фокусирующая оптика;
- 9 плоскость изображения

- б. Структурная схема канала детектирования и регистрации изображений ДЗЗ:
- 10 электромеханический затвор;
- 11 усилитель яркости изображения;
- 12 оптика переноса;
- 13 квадратичный детектор;
- 14 цифровая система обработки видеосигнала;
- 15 бортовой компьютер;
- 16 кодирующее устройство;
- 17 бортовая РЛС

Рис. 12.

в. Структурная схема канала обработки изображений ПЗЗ:

18 — наземная РЛС;

19 — декодирующее устройство;

20 — вычислительные средства;

21 — программное обеспечение;

22 — алгоритмическое обеспечение обработки изображений ДЗЗ;

23 — APM оператора;

24 — потребители изображений ДЗЗ высокого разрешения

Рис. 12. Окончание

3) оптимальный диаметр апертуры равен $D_{\text{опт.}}=3.5r_0$. При этом максимальный выигрыш в разрешении системы с компенсацией по сравнению с системой без компенсации случайных наклонов волнового фронта равен 4.

Список литературы

1. Свиридов К. Н. О предельном разрешении аэрокосмических систем дистанционного зондирования

- Земли (ДЗЗ) // Ракетно-космическое приборостроение и информационные системы, 2014, т. 1, вып. 1, с. 34–40.
- 2. *Лавров В. В.* Космические съемочные системы сверхвысокого разрешения // Геоинформационный портал ГИС-Ассоциации, 2010, № 2.
- 3. Fried D. L. Limiting Resolution Looking Down Through the Atmosphere // Journal of The Optical Society of America, 1966, vol. 56, p. 1380–1384.
- 4. Свиридов К. Н., Волков С. А. Способ дистанционного зондирования Земли, авторская заявка на изобретение ОАО «Российские космические системы», №2015129353 от 17.07.2015.
- 5. Свиридов К. Н. и др. Методы обработки световых полей при наблюдении объектов через турбулентную среду, часть 3. «Адаптивные методы формирования изображений» // Зарубежная радиоэлектроника, 1977, № 1, с. 3.
- 6. Адаптивная оптика, сборник статей. М.: Мир, 1980.
- 7. *Shapiro J. H.* Reciprocity of the Turbulent Atmosphere // Journal of The Optical Society of America, 1971, vol. 61, p.492–495.
- 8. Свиридов К. Н. Технологии высокого разрешения оптических систем атмосферного видения, изд. LAP(LAMBERT Academic Publishing) GmbH, 2005.
- 9. Fried D. L. Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures // Journal of The Optical Society of America, 1996, vol. 56, p. 1372–1379.
- 10. *O'Neill*. Journal of The Optical Society of America, 1956, vol. 46, p. 285.